Questions tagged [real-analysis]

For questions about real analysis, a branch of mathematics dealing with limits, convergence of sequences, construction of the real numbers, the least upper bound property; and related analysis topics, such as continuity, differentiation, and integration through the Fundamental Theorem of Calculus. This tag can also be used for more advanced topics, like measure theory.

Real analysis is a branch of mathematical analysis, which deals with the real numbers and real-valued functions. In particular, it deals with the analytic properties of real functions and sequences, including convergence and limits of sequences of real numbers, the limits of sequences of functions of real numbers, continuity, smoothness and related properties of real-valued functions.

It also includes measure theory, integration theory, Lebesgue measures and integration, differentiation of measures, limits, sequences and series, continuity, and derivatives. Questions regarding these topics should also use the more specific tags, e.g. .

132426 questions
7 answers

How can you prove that a function has no closed form integral?

In the past, I've come across statements along the lines of "function $f(x)$ has no closed form integral", which I assume means that there is no combination of the operations: addition/subtraction multiplication/division raising to powers and…
30 answers

Is it true that $0.999999999\ldots=1$?

I'm told by smart people that $$0.999999999\ldots=1$$ and I believe them, but is there a proof that explains why this is?
1 answer

How discontinuous can a derivative be?

There is a well-known result in elementary analysis due to Darboux which says if $f$ is a differentiable function then $f'$ satisfies the intermediate value property. To my knowledge, not many "highly" discontinuous Darboux functions are known--the…
Chris Janjigian
  • 8,143
  • 4
  • 25
  • 41
5 answers

Evaluate $ \int_{0}^{\frac{\pi}2}\frac1{(1+x^2)(1+\tan x)}\:\mathrm dx$

Evaluate the following integral $$ \tag1\int_{0}^{\frac{\pi}{2}}\frac1{(1+x^2)(1+\tan x)}\,\mathrm dx $$ My Attempt: Letting $x=\frac{\pi}{2}-x$ and using the property that $$ \int_{0}^{a}f(x)\,\mathrm dx = \int_{0}^{a}f(a-x)\,\mathrm dx $$ we…
16 answers

Any open subset of $\Bbb R$ is a countable union of disjoint open intervals

Let $U$ be an open set in $\mathbb R$. Then $U$ is a countable union of disjoint intervals. This question has probably been asked. However, I am not interested in just getting the answer to it. Rather, I am interested in collecting as many…
Orest Xherija
  • 1,039
  • 3
  • 12
  • 26
9 answers

Evaluating $\lim\limits_{n\to\infty} e^{-n} \sum\limits_{k=0}^{n} \frac{n^k}{k!}$

I'm supposed to calculate: $$\lim_{n\to\infty} e^{-n} \sum_{k=0}^{n} \frac{n^k}{k!}$$ By using WolframAlpha, I might guess that the limit is $\frac{1}{2}$, which is a pretty interesting and nice result. I wonder in which ways we may approach it.
user 1591719
  • 43,176
  • 10
  • 95
  • 246
4 answers

The Integral that Stumped Feynman?

In "Surely You're Joking, Mr. Feynman!," Nobel-prize winning Physicist Richard Feynman said that he challenged his colleagues to give him an integral that they could evaluate with only complex methods that he could not do with real…
9 answers

What does $2^x$ really mean when $x$ is not an integer?

We all know that $2^5$ means $2\times 2\times 2\times 2\times 2 = 32$, but what does $2^\pi$ mean? How is it possible to calculate that without using a calculator? I am really curious about this, so please let me know what you think.
David G
  • 3,837
  • 8
  • 31
  • 38
6 answers

When can you switch the order of limits?

Suppose you have a double sequence $\displaystyle a_{nm}$. What are sufficient conditions for you to be able to say that $\displaystyle \lim_{n\to \infty}\,\lim_{m\to \infty}{a_{nm}} = \lim_{m\to \infty}\,\lim_{n\to \infty}{a_{nm}}$? Bonus points…
  • 9,046
  • 5
  • 30
  • 50
3 answers

When can a sum and integral be interchanged?

Let's say I have $\int_{0}^{\infty}\sum_{n = 0}^{\infty} f_{n}(x)\, dx$ with $f_{n}(x)$ being continuous functions. When can we interchange the integral and summation? Is $f_{n}(x) \geq 0$ for all $x$ and for all $n$ sufficient? How about when $\sum…
  • 1,921
  • 3
  • 12
  • 4
8 answers

Are there any series whose convergence is unknown?

Are there any infinite series about which we don't know whether it converges or not? Or are the convergence tests exhaustive, so that in the hands of a competent mathematician any series will eventually be shown to converge or diverge? EDIT: People…
  • 2,141
  • 3
  • 13
  • 12
3 answers

Limit of $L^p$ norm

Could someone help me prove that given a finite measure space $(X, \mathcal{M}, \sigma)$ and a measurable function $f:X\to\mathbb{R}$ in $L^\infty$ and some $L^q$, $\displaystyle\lim_{p\to\infty}\|f\|_p=\|f\|_\infty$? I don't know where to start.
  • 3,026
  • 3
  • 16
  • 25
9 answers

Self-Contained Proof that $\sum\limits_{n=1}^{\infty} \frac1{n^p}$ Converges for $p > 1$

To prove the convergence of the p-series $$\sum_{n=1}^{\infty} \frac1{n^p}$$ for $p > 1$, one typically appeals to either the Integral Test or the Cauchy Condensation Test. I am wondering if there is a self-contained proof that this series…
  • 2,654
  • 3
  • 15
  • 14
5 answers

The sum of an uncountable number of positive numbers

Claim: If $(x_\alpha)_{\alpha\in A}$ is a collection of real numbers $x_\alpha\in [0,\infty]$ such that $\sum_{\alpha\in A}x_\alpha<\infty$, then $x_\alpha=0$ for all but at most countably many $\alpha\in A$ ($A$ need not be countable). Proof: Let…
  • 5,176
  • 5
  • 24
  • 27
7 answers

Why is Euler's Gamma function the "best" extension of the factorial function to the reals?

There are lots (an infinitude) of smooth functions that coincide with $f(n)=n!$ on the integers. Is there a simple reason why Euler's Gamma function $\Gamma (z) = \int_0^\infty t^{z-1} e^{-t} dt$ is the "best"? In particular, I'm looking for…
  • 1,843
  • 2
  • 12
  • 6
2 3
99 100