Questions tagged [closed-form]

A "closed form expression" is any representation of a mathematical expression in terms of "known" functions, "known" usually being replaced with "elementary".

In mathematics, it is often (though not always) desirable to provide a "closed-form", an expression in terms of a finite number of known functions, usually free from the presence of operators such as infinite series, (in)definite integrals, recurrence relations, diagrams, etc. This often allows for quick computation of the objects under consideration and may provide more insight into their behavior.

As an easy example, for $n$ a positive integer the sum of the first $n$ positive integers is $1+2+\ldots + (n-1)+n=\sum_{k=1}^n k$; however, this can be expressed in a closed-form as $\frac{n(n+1)}{2}$, which provides an efficient way to compute particular cases and gives a hint at asymptotic behavior. In a similar vein, $1^2+2^2+3^2+\ldots+n^2 = \frac{n(n+1)(2n+1)}{6}$; Eduoard Lucas conjectured that this value is only a perfect square for $n=1,24$, an observation difficult to spot without an explicit formula to work with. Other cases include Infinite Series $\sum\limits_{n=1}^\infty\frac{(H_n)^2}{n^3}$, which expresses an infinite series as a combination of three values of an elementary function (the Riemann zeta function), and Prove $\int_{0}^{\pi/2} \ln \left(x^{2} + (\ln\cos x)^2 \right) \, dx=\pi\ln\ln2 $.

That being said, sometimes other properties, such as recurrence, are more helpful for various purposes. For example, starting with $F_0=0$, $F_1=1$, a closed-form for the Fibonacci numbers is $F_n = \frac{(1+\sqrt{5})^n-(1-\sqrt{5})^n}{2^n \sqrt{5}}$ . This gives us the asymptotic $F_n\approx \frac{1}{\sqrt{5}}\phi^n$, but to compute $F_{20}$ it is much easier to use the recursion $F_{n}=F_{n-1}+F_{n-2}$. The recursion is likely more useful if one is doing combinatorics as well.

3189 questions
507
votes
10 answers

Integral $\int_{-1}^1\frac1x\sqrt{\frac{1+x}{1-x}}\ln\left(\frac{2\,x^2+2\,x+1}{2\,x^2-2\,x+1}\right) \mathrm dx$

I need help with this integral: $$I=\int_{-1}^1\frac1x\sqrt{\frac{1+x}{1-x}}\ln\left(\frac{2\,x^2+2\,x+1}{2\,x^2-2\,x+1}\right)\ \mathrm dx.$$ The integrand graph looks like this: $\hspace{1in}$ The approximate numeric value of the…
161
votes
4 answers

Evaluate $\int_0^1 \frac{\log \left( 1+x^{2+\sqrt{3}}\right)}{1+x}\mathrm dx$

I am trying to find a closed form for $$\int_0^1 \frac{\log \left( 1+x^{2+\sqrt{3}}\right)}{1+x}\mathrm dx = 0.094561677526995723016 \cdots$$ It seems that the answer is $$\frac{\pi^2}{12}\left( 1-\sqrt{3}\right)+\log(2) \log \left(1+\sqrt{3}…
128
votes
2 answers

How to prove $\int_0^1\tan^{-1}\left[\frac{\tanh^{-1}x-\tan^{-1}x}{\pi+\tanh^{-1}x-\tan^{-1}x}\right]\frac{dx}{x}=\frac{\pi}{8}\ln\frac{\pi^2}{8}?$

How can one prove that $$\int_0^1 \tan^{-1}\left[\frac{\tanh^{-1}x-\tan^{-1}x}{\pi+\tanh^{-1}x-\tan^{-1}x}\right]\frac{dx}{x}=\frac{\pi}{8}\ln\frac{\pi^2}{8}?$$
larry
  • 1,409
  • 1
  • 11
  • 5
115
votes
3 answers

Compute $\int_0^{\pi/4}\frac{(1-x^2)\ln(1+x^2)+(1+x^2)-(1-x^2)\ln(1-x^2)}{(1-x^4)(1+x^2)} x\exp(\frac{x^2-1}{x^2+1}) dx$

Compute the following integral \begin{equation} \int_0^{\Large\frac{\pi}{4}}\left[\frac{(1-x^2)\ln(1+x^2)+(1+x^2)-(1-x^2)\ln(1-x^2)}{(1-x^4)(1+x^2)}\right] x\, \exp\left[\frac{x^2-1}{x^2+1}\right]\, dx \end{equation} I was given two integral…
100
votes
4 answers

An integral involving Airy functions $\int_0^\infty\frac{x^p}{\operatorname{Ai}^2 x + \operatorname{Bi}^2 x}\mathrm dx$

I need your help with this integral: $$\mathcal{K}(p)=\int_0^\infty\frac{x^p}{\operatorname{Ai}^2 x + \operatorname{Bi}^2 x}\mathrm dx,$$ where $\operatorname{Ai}$, $\operatorname{Bi}$ are Airy…
Cleo
  • 17,008
  • 5
  • 44
  • 62
99
votes
1 answer

Arithmetic-geometric mean of 3 numbers

The arithmetic-geometric mean$^{[1]}$$\!^{[2]}$ of 2 numbers $a$ and $b$ is denoted $\operatorname{AGM}(a,b)$ and defined as follows: $$\text{Let}\quad a_0=a,\quad b_0=b,\quad a_{n+1}=\frac{a_n+b_n}2,\quad b_{n+1}=\sqrt{a_n…
90
votes
2 answers

Conjecture $\int_0^1\frac{\mathrm dx}{\sqrt{1-x}\ \sqrt[4]x\ \sqrt[4]{2-x\,\sqrt3}}\stackrel?=\frac{2\,\sqrt2}{3\,\sqrt[8]3}\pi$

$$\int_0^1\frac{\mathrm dx}{\sqrt{1-x}\ \sqrt[4]x\ \sqrt[4]{2-x\,\sqrt3}}\stackrel?=\frac{2\,\sqrt2}{3\,\sqrt[8]3}\pi\tag1$$ The equality numerically holds up to at least $10^4$ decimal digits. Can we prove that the equality is exact? An…
86
votes
2 answers

Conjecture $\int_0^1\frac{dx}{\sqrt[3]x\,\sqrt[6]{1-x}\,\sqrt{1-x\left(\sqrt{6}\sqrt{12+7\sqrt3}-3\sqrt3-6\right)^2}}=\frac\pi9(3+\sqrt2\sqrt[4]{27})$

Let $$\alpha=\sqrt{6}\ \sqrt{12+7\,\sqrt3}-3\,\sqrt3-6\,=\,\big(2+\sqrt{3}\big) \big(\sqrt{2} \sqrt[4]{27}-3\big)\,=\,\frac{3\sqrt{3}}{3+\sqrt2\ \sqrt[4]{27}}.\tag1$$ Note that $\alpha$ is the unique positive root of the polynomial…
82
votes
1 answer

The closed form of $\int_0^{\pi/4}\frac{\log(1-x) \tan^2(x)}{1-x\tan^2(x)} \ dx$

What tools or ways would you propose for getting the closed form of this integral? $$\int_0^{\pi/4}\frac{\log(1-x) \tan^2(x)}{1-x\tan^2(x)} \ dx$$ EDIT: It took a while since I made this post. I'll give a little bounty for the solver of the problem,…
79
votes
4 answers

Integral $\int_1^\infty\operatorname{arccot}\left(1+\frac{2\pi}{\operatorname{arcoth}x-\operatorname{arccsc}x}\right)\frac{\mathrm dx}{\sqrt{x^2-1}}$

Consider the following integral: $$\mathcal{I}=\int_1^\infty\operatorname{arccot}\left(1+\frac{2\,\pi}{\operatorname{arcoth}x\,-\,\operatorname{arccsc}x}\right)\frac{\mathrm dx}{\sqrt{x^2-1}}\,,$$ where $\operatorname{arccsc}$ is the inverse…
79
votes
1 answer

Closed form for $\int_0^\infty\ln\frac{J_\mu(x)^2+Y_\mu(x)^2}{J_\nu(x)^2+Y_\nu(x)^2}\mathrm dx$

Consider the following integral: $$\mathcal{I}(\mu,\nu)=\int_0^\infty\ln\frac{J_\mu(x)^2+Y_\mu(x)^2}{J_\nu(x)^2+Y_\nu(x)^2}\mathrm dx,$$ where $J_\mu(x)$ is the Bessel function of the first kind: $$J_\mu(x)=\sum…
Vladimir Reshetnikov
  • 45,303
  • 7
  • 151
  • 282
72
votes
2 answers

Conjecture $_2F_1\left(\frac14,\frac34;\,\frac23;\,\frac13\right)=\frac1{\sqrt{\sqrt{\frac4{\sqrt{2-\sqrt[3]4}}+\sqrt[3]{4}+4}-\sqrt{2-\sqrt[3]4}-2}}$

Using a numerical search on my computer I discovered the following inequality: $$\left|\,{_2F_1}\left(\frac14,\frac34;\,\frac23;\,\frac13\right)-\rho\,\right|<10^{-20000},\tag1$$ where $\rho$ is the positive root of the polynomial…
69
votes
4 answers

Show that $\int_{0}^{\pi/2}\frac {\log^2\sin x\log^2\cos x}{\cos x\sin x}\mathrm{d}x=\frac14\left( 2\zeta (5)-\zeta(2)\zeta (3)\right)$

Show that : $$ \int_{0}^{\Large\frac\pi2} {\ln^{2}\left(\vphantom{\large A}\cos\left(x\right)\right) \ln^{2}\left(\vphantom{\large A}\sin\left(x\right)\right) \over \cos\left(x\right)\sin\left(x\right)}\,{\rm d}x ={1 \over…
Ryan
  • 3,775
  • 1
  • 15
  • 31
68
votes
3 answers

Closed form for $\int_0^1\log\log\left(\frac{1}{x}+\sqrt{\frac{1}{x^2}-1}\right)\mathrm dx$

Please help me to find a closed form for the following integral: $$\int_0^1\log\left(\log\left(\frac{1}{x}+\sqrt{\frac{1}{x^2}-1}\right)\right)\,{\mathrm d}x.$$ I was told it could be calculated in a closed form.
66
votes
4 answers

Integral $\int_0^1\frac{\ln\left(x+\sqrt2\right)}{\sqrt{2-x}\,\sqrt{1-x}\,\sqrt{\vphantom{1}x}}\mathrm dx$

Is there a closed form for the integral $$\int_0^1\frac{\ln\left(x+\sqrt2\right)}{\sqrt{2-x}\,\sqrt{1-x}\,\sqrt{\vphantom{1}x}}\mathrm dx.$$ I do not have a strong reason to be sure it exists, but I would be very interested to see an approach to…
1
2 3
99 100