Questions on proving, manipulating and applying inequalities. Do not use this tag just because an inequality appears somewhere in your question.

An inequality is a mathematical relation between two quantities that are not necessarily equal, but bigger or smaller.

To prove inequalities, a number of proven inequalities can be used, including:

The AM-GM inequality a.m.-g.m.-inequality

Let $x_i>0$, $\alpha_i>0$ such that $\alpha_1+\alpha_2+...+\alpha_n=1$. Prove that $$\alpha_1x_1+\alpha_2x_2+...+\alpha_nx_n\geq x_1^{\alpha_1}x_2^{\alpha_2}...x_n^{\alpha_n}$$

For $\alpha_1=\alpha_2=...=\alpha_n=\frac{1}{n}$ we obtain the well-known $$\frac{x_1+x_2+\cdots+x_n}{n} \ge \sqrt[n]{x_1x_2\cdots x_n}$$

The Power Mean inequality (P-M).

Let $a_1, a_2,\cdots, a_n$ be positive numbers and $p>q$. Then $$\left(\frac{a_1^p+a_2^p+\cdots+a_n^p}{n}\right)^{\frac{1}{p}} \geq \left(\frac{a_1^q+a_2^q+\cdots+a_n^q}{n}\right)^{\frac{1}{q}}$$

The Rearrangement inequality (R).rearrangement-inequality

Let $a_1\le\dots\le a_n$ and $b_1\le\dots\le b_n$. For all permutations $\sigma\in S_n$, $$\sum_{i=1}^na_ib_{n-i+1}\le\sum_{i=1}^na_ib_{\sigma(i)}\leq\sum_{i=1}^na_ib_i.$$

The rearrangement generalizes similar for more than two sequences of numbers.

The Cauchy-Schwarz inequality (C-S). cauchy-schwarz-inequality

If $a_1, a_2, \cdots, a_n$ and $b_1, b_2,\cdots, b_n$ are two sequences of real numbers, then $$\sum^{n}_{i=1} a_i^2 \sum^{n}_{i=1} b_i^2\geq\left(\sum^{n}_{i=1} a_ib_i \right)^2$$

The H$\ddot o$lder inequality (H).holder-inequality

Let $a_1$, $a_2$,..., $a_n$, $b_1$, $b_2$,..., $b_n$, $\alpha$ and $\beta$ be positive numbers. Then $$\left(\sum_{i =1}^n a_i\right )^\alpha \left(\sum_{i =1}^n b_i \right )^\beta\geq \left(\sum_{i =1}^n (a_ib_i)^\frac{1}{\alpha+\beta}\right )^{\alpha+\beta} $$

The Schur inequalities (S):

Let $x$, $y$ and $z$ be positive numbers and $t$ is a real number. Prove that:$$x^t(x-y)(x-z)+y^t(y-z)(y-x)+z^t (z-x)(z-y)\ge 0$$

- Muirhead inequalities muirhead-inequality
A sequence $a_1 \geq a_2 \geq \dots \geq a_n$

*majorizes*a sequence $b_1 \geq b_2 \geq \dots \geq b_n$ if $$\sum_{i=1}^k a_i \geq\sum_{i=1}^k a_i $$ for all $1\leq k < n$ and $$\sum_{i=1}^n a_i =\sum_{i=1}^n a_i $$ If sequence $(a_i)$ majorizes $(b_i)$ (notated as $a_i \succ b_i$), then $$\sum_{\text{sym}}x_1^{a_1}x_2^{a_2}\dots x_n^{a_n}\geq \sum_{\text{sym}}x_1^{b_1}x_2^{b_2}\dots x_n^{b_n}$$