In this MO post, I ran into the following family of polynomials: $$f_n(x)=\sum_{m=0}^{n}\prod_{k=0}^{m-1}\frac{x^n-x^k}{x^m-x^k}.$$ In the context of the post, $x$ was a prime number, and $f_n(x)$ counted the number of subspaces of an $n$-dimensional vector space over $GF(x)$ (which I was using to determine the number of subgroups of an elementary abelian group $E_{x^n}$).

Anyway, while I was investigating asymptotic behavior of $f_n(x)$ in Mathematica, I got sidetracked and (just for fun) looked at the set of complex roots when I set $f_n(x)=0$. For $n=24$, the plot looked like this: (The real and imaginary axes are from $-1$ to $1$.)

Surprised by the unusual symmetry of the solutions, I made the same plot for a few more values of $n$. Note the clearly defined "tails" (on the left when even, top and bottom when odd) and "cusps" (both sides).

You can see that after approximately $n=60$, the "circle" of solutions starts to expand into a band of solutions with a defined outline. To fully absorb the weirdness of this, I animated the solutions from $n=2$ to $n=112$. The following is the result:

Pretty weird, right!? Anyhow, here are my questions:

- First, has anybody ever seen anything at all like this before?
- What's up with those "tails?" They seem to occur only on even $n$, and they are surely distinguishable from the rest of the solutions.
~~Look how the "enclosed" solutions rotate as $n$ increases. Why does this happen?~~[Explained in edits.]~~Anybody have any idea what happens to the solution set as $n\rightarrow \infty$?~~Thanks to @WillSawin, we now know thatall the roots are contained in an annulus that converges to the unit circle, which is fantastic. So, the final step in understanding the limit of the solution sets is figuring out what happensonthe unit circle. We can see from the animation that there are many gaps, particularly around certain roots of unity; however, they do appear to be closing.

- The natural question is, which points on the unit circle "are roots in the limit"? In other words, what are the accumulation points of $\{z\left|z\right|^{-1}:z\in\mathbb{C}\text{ and }f_n(z)=0\}$?
- Is the set of accumulation points dense? @NoahSnyder's heuristic of considering these as a random family of polynomials suggests it should be- at least, almost surely.
~~These are polynomials in $\mathbb{Z}[x]$. Can anybody think of a way to rewrite the formula (perhaps recursively?) for the simplified polynomial, with no denominator? If so, we could use the new formula to prove the series converges to a function on the unit disc, as well as cut computation time in half.~~[See edits for progress.]~~Does anybody know a numerical method specifically for finding roots of high degree polynomials? Or any other way to efficiently compute solution sets for high $n$?~~[Thanks @Hooked!]

Thanks everyone. This may not turn out to be particularly mathematically profound, but it sure is *neat*.

**EDIT**: Thanks to suggestions in the comments, I cranked up the working precision to maximum and recalculated the animation. As Hurkyl and mercio suspected, the rotation was indeed a software artifact, and in fact evidently so was the thickening of the solution set. The new animation looks like this:

So, that solves one mystery: the rotation and inflation were caused by tiny roundoff errors in the computation. With the image clearer, however, I see the behavior of the cusps more clearly. Is there an explanation for the gradual accumulation of "cusps" around the roots of unity? (Especially 1.)

**EDIT**: Here is an animation $Arg(f_n)$ up to $n=30$. I think we can see from this that $f_n$ should converge to some function on the unit disk as $n\rightarrow \infty$. I'd love to include higher $n$, but this was already rather computationally exhausting.

Now, I've been tinkering and I may be onto something with respect to point $5$ (i.e. seeking a better formula for $f_n(x)$). The folowing claims aren't proven yet, but I've checked each up to $n=100$, and they seem inductively consistent. Here denote $\displaystyle f_n(x)=\sum_{m}a_{n,m}x^m$, so that $a_{n,m}\in \mathbb{Z}$ are the coefficients in the simplified expansion of $f_n(x)$.

First, I found $\text{deg}(f_n)=\text{deg}(f_{n-1})+\lfloor \frac{n}{2} \rfloor$. The solution to this recurrence relation is $$\text{deg}(f_n)=\frac{1}{2}\left({\left\lceil\frac{1-n}{2}\right\rceil}^2 -\left\lceil\frac{1-n}{2}\right\rceil+{\left\lfloor \frac{n}{2} \right\rfloor}^2 + \left\lfloor \frac{n}{2} \right\rfloor\right)=\left\lceil\frac{n^2}{4}\right\rceil.$$

If $f_n(x)$ has $r$ more coefficients than $f_{n-1}(x)$, the leading $r$ coefficients are the same as the leading $r$ coefficients of $f_{n-2}(x)$, pairwise.

When $n>m$, $a_{n,m}=a_{n-1,m}+\rho(m)$, where $\rho(m)$ is the number of integer partitions of $m$. (This comes from observation, but I bet an actual proof could follow from some of the formulas here.) For $n\leq m$ the $\rho(m)$ formula first fails at $n=m=6$, and not before for some reason. There is probably a simple correction term I'm not seeing - and whatever that term is, I bet it's what's causing those cusps.

Anyhow, with this, we can make *almost* make a recursive relation for $a_{n,m}$,
$$a_{n,m}= \left\{
\begin{array}{ll}
a_{n-2,m+\left\lceil\frac{n-2}{2}\right\rceil^2-\left\lceil\frac{n}{2}\right\rceil^2} & : \text{deg}(f_{n-1}) < m \leq \text{deg}(f_n)\\
a_{n-1,m}+\rho(m) & : m \leq \text{deg}(f_{n-1}) \text{ and } n > m \\
? & : m \leq \text{deg}(f_{n-1}) \text{ and } n \leq m
\end{array}
\right.
$$
but I can't figure out the last part yet.

**EDIT**:
Someone pointed out to me that if we write $\lim_{n\rightarrow\infty}f_n(x)=\sum_{m=0}^\infty b_{m} x^m$, then it appears that $f_n(x)=\sum_{m=0}^n b_m x^m + O(x^{n+1})$. The $b_m$ there seem to me to be relatively well approximated by the $\rho(m)$ formula, considering the correction term only applies for a finite number of recursions.

So, if we have the coefficients up to an order of $O(x^{n+1})$, we can at least prove the polynomials converge on the open unit disk, which the $Arg$ animation suggests is true. (To be precise, it looks like $f_{2n}$ and $f_{2n+1}$ may have different limit functions, but I suspect the coefficients of both sequences will come from the same recursive formula.) With this in mind, I put a bounty up for the correction term, since from that all the behavior will probably be explained.

**EDIT**: The limit function proposed by Gottfriend and Aleks has the formal expression $$\lim_{n\rightarrow \infty}f_n(x)=1+\prod_{m=1}^\infty \frac{1}{1-x^m}.$$
I made an $Arg$ plot of $1+\prod_{m=1}^r \frac{1}{1-x^m}$ for up to $r=24$ to see if I could figure out what that ought to ultimately end up looking like, and came up with this:

Purely based off the plots, it seems not entirely unlikely that $f_n(x)$ is going to the same place this is, at least inside the unit disc. Now the question is, how do we determine the solution set at the limit? I speculate that the unit circle may become a dense combination of zeroes and singularities, with fractal-like concentric "circles of singularity" around the roots of unity... :)