1

I have a large set of unlabeled data and a smaller set of labeled data. Thus, I would like to first train a variational autoencoder on the unlabeled data and then use the encoder for classification of three classes (with a fully connected layer attached) on the labeled data. For optimization of the hyperparameters I would like to use Optuna.

One possibility would be to first optimize the autoencoder and then optimize the fully connected network (classification) but then the autoencoder might learn an encoding which is meaningless for the classification.

Is there a possibility to jointly optimize the autoencoder and the fully connected network?

My autoencoder looks as follows (params is just a dictionary holding the params):

inputs = Input(shape=image_size, name='encoder_input')
x = inputs

for i in range(len(params["conv_filter_encoder"])):
    x, _ = convolutional_unit(x, params["conv_filter_encoder"][i], params["conv_kernel_size_encoder"][i], params["strides_encoder"][i],
                           batchnorm=params["batchnorm"][i], dropout=params["dropout"][i], maxpool=params["maxpool"][i], deconv=False)

shape = K.int_shape(x)

x = Flatten()(x)
x = Dense(params["inner_dim"], activation='relu')(x)
z_mean = Dense(params["latent_dim"], name='z_mean')(x)
z_log_var = Dense(params["latent_dim"], name='z_log_var')(x)

# use reparameterization trick to push the sampling out as input
# note that "output_shape" isn't necessary with the TensorFlow backend
z = Lambda(sampling, output_shape=(params["latent_dim"],), name='z')([z_mean, z_log_var])

# instantiate encoder model
encoder = Model(inputs, [z_mean, z_log_var, z], name='encoder')

# build decoder model
latent_inputs = Input(shape=(params["latent_dim"],), name='z_sampling')
x = Dense(params["inner_dim"], activation='relu')(latent_inputs)
x = Dense(shape[1] * shape[2] * shape[3], activation='relu')(x)
x = Reshape((shape[1], shape[2], shape[3]))(x)

len_batchnorm = len(params["batchnorm"])
len_dropout = len(params["dropout"])
for i in range(len(params["conv_filter_decoder"])):
    x, _ = convolutional_unit(x, params["conv_filter_decoder"][i], params["conv_kernel_size_decoder"][i], params["strides_decoder"][i],
                           batchnorm=params["batchnorm"][len_batchnorm-i-1], dropout=params["dropout"][len_dropout-i-1], maxpool=None, deconv=True, activity_regularizer=params["activity_regularizer"])

outputs = Conv2DTranspose(filters=1,
                          kernel_size=params["conv_kernel_size_decoder"][len(params["conv_kernel_size_decoder"])-1],
                          activation='sigmoid',
                          padding='same')(x)

# instantiate decoder model
decoder = Model(latent_inputs, outputs, name='decoder')

# instantiate VAE model
outputs = decoder(encoder(inputs)[2])
vae = Model(inputs, outputs, name='vae')
vae.higgins_beta = K.variable(value=params["beta"])
loss = config["loss"].value

def vae_loss(x, x_decoded_mean):
    """VAE loss function"""
    # VAE loss = mse_loss or xent_loss + kl_loss
    if loss == Loss.mse.value:
        reconstruction_loss = mse(K.flatten(x), K.flatten(x_decoded_mean))
    elif loss == Loss.bce.value:
        reconstruction_loss = binary_crossentropy(K.flatten(x),
                                                  K.flatten(x_decoded_mean))
    else:
        raise ValueError("Loss unknown")

    reconstruction_loss *= image_size[0] * image_size[1]
    kl_loss = 1 + z_log_var - K.square(z_mean) - K.exp(z_log_var)
    kl_loss = K.sum(kl_loss, axis=-1)
    # kl_loss *= -0.5
    kl_loss *= -vae.higgins_beta
    vae_loss = K.mean(reconstruction_loss + kl_loss)

    return vae_loss

batch_size = params["batch_size"]
optimizer = keras.optimizers.Adam(lr=params["learning_rate"], beta_1=0.9, beta_2=0.999,
                                  epsilon=1e-08, decay=params["learning_rate_decay"])
vae.compile(loss=vae_loss, optimizer=optimizer)

vae.fit(train_X, train_X,
          epochs=config.CONFIG["n_epochs"],
          batch_size=batch_size,
          verbose=0,
          callbacks=get_callbacks(config.CONFIG, autoencoder_path, encoder, decoder, vae),
          shuffle=shuffle,
          validation_data=(valid_X, valid_X))

My fully connected network attached to the encoder looks as follows:

latent = vae.predict(images)[0]
inputs = Input(shape=(input_shape,), name='fc_input')
den = inputs
for i in range(len(self.params["units"])):
    den = Dense(self.params["units"][i])(den)

    den = Activation('relu')(den)

out = Dense(self.num_classes, activation='softmax')(den)

model = Model(inputs, out, name='fcnn')

optimizer = keras.optimizers.Adam(lr=self.mc.CONFIG["fcnn"]["learning_rate"], beta_1=0.9, beta_2=0.999,
                                  epsilon=1e-08, decay=self.mc.CONFIG["fcnn"]["learning_rate_decay"])

model.compile(loss='categorical_crossentropy', optimizer=optimizer, metrics=['accuracy'])

    model.fit(latent, y,
            epochs=self.params["n_epochs"],
            batch_size=self.params["batch_size"],
            verbose=0,
            shuffle=True)

 y_prob = model.predict(latent)
machinery
  • 4,802
  • 8
  • 49
  • 88

0 Answers0