List of interstellar and circumstellar molecules

This is a list of molecules that have been detected in the interstellar medium and circumstellar envelopes, grouped by the number of component atoms. The chemical formula is listed for each detected compound, along with any ionized form that has also been observed.


The molecules listed below were detected through astronomical spectroscopy. Their spectral features arise because molecules either absorb or emit a photon of light when they transition between two molecular energy levels. The energy (and thus the wavelength) of the photon matches the energy difference between the levels involved. Molecular electronic transitions occur when one of the molecule's electrons moves between molecular orbitals, producing a spectral line in the ultraviolet, optical or near-infrared parts of the electromagnetic spectrum. Alternatively, a vibrational transition transfers quanta of energy to (or from) vibrations of molecular bonds, producing signatures in the mid- or far-infrared. Gas-phase molecules also have quantised rotational levels, leading to transitions at microwave or radio wavelengths.[1]

Sometimes a transition can involve more than one of these types of energy level e.g. ro-vibrational spectroscopy changes both the rotational and vibrational energy level. Occasionally all three occur together, as in the Phillips band of C2 (diatomic carbon), in which an electronic transition produces a line in the near-infrared, which is then split into several vibronic bands by a simultaneous change in vibrational level, which in turn are split again into rotational branches.[2]

The spectrum of a particular molecule is governed by the selection rules of quantum chemistry and by its molecular symmetry. Some molecules have simple spectra which are easy to identify, whilst others (even some small molecules) have extremely complex spectra with flux spread among many different lines, making them far harder to detect.[3] Interactions between the atomic nuclei and the electrons sometimes cause further hyperfine structure of the spectral lines. If the molecule exists in multiple isotopologues (versions containing different atomic isotopes), the spectrum is further complicated by isotope shifts.

Detection of a new interstellar or circumstellar molecule requires identifying a suitable astronomical object where it is likely to be present, then observing it with a telescope equipped with a spectrograph working at the required wavelength, spectral resolution and sensitivity. The first molecule detected in the interstellar medium was the methylidyne radical (CH) in 1937, through its strong electronic transition at 4300 angstroms (in the optical).[4] Advances in astronomical instrumentation have led to increasing numbers of new detections. From the 1950s onwards, radio astronomy began to dominate new detections, with sub-mm astronomy also becoming important from the 1990s.[3]

The inventory of detected molecules is highly biased towards certain types which are easier to detect: e.g. radio astronomy is most sensitive to small linear molecules with a high molecular dipole.[3] The most common molecule in the Universe, H2 (molecular hydrogen) is completely invisible to radio telescopes because it has no dipole;[3] its electronic transitions are too energetic for optical telescopes, so detection of H2 required ultraviolet observations with a sounding rocket.[5] Vibrational lines are often not specific to an individual molecule, allowing only the general class to be identified. For example, the vibrational lines of polycyclic aromatic hydrocarbons (PAHs) were identified in 1984,[6] showing the class of molecules is very common in space,[7] but it took until 2021 to identify any specific PAHs through their rotational lines.[8][9]

One of the richest sources for detecting interstellar molecules is Sagittarius B2 (Sgr B2), a giant molecular cloud near the centre of the Milky Way. About half of the molecules listed below were first found in Sgr B2, and many of the others have been subsequently detected there.[10] A rich source of circumstellar molecules is CW Leonis (also known as IRC +10216), a nearby carbon star, where about 50 molecules have been identified.[11] There is no clear boundary between interstellar and circumstellar media, so both are included in the tables below.

The discipline of astrochemistry includes understanding how these molecules form and explaining their abundances. The extremely low density of the interstellar medium is not conducive to the formation of molecules, making conventional gas-phase reactions between neutral species (atoms or molecules) inefficient. Many regions also have very low temperatures (typically 10 kelvin inside a molecular cloud), further reducing the reaction rates, or high ultraviolet radiation fields, which destroy molecules through photochemistry.[12] Explaining the observed abundances of interstellar molecules requires calculating the balance between formation and destruction rates using gas-phase ion chemistry (often driven by cosmic rays), surface chemistry on cosmic dust, radiative transfer including interstellar extinction, and sophisticated reaction networks.[13]


The following tables list molecules that have been detected in the interstellar medium or circumstellar matter, grouped by the number of component atoms. Neutral molecules and their molecular ions are listed in separate columns; if there is no entry in the molecule column, only the ionized form has been detected. Designations (names of molecules) are those used in the scientific literature describing the detection; if none was given that field is left empty. Mass is listed in atomic mass units. Deuterated molecules, which contain at least one deuterium (2H) atom, have slightly different masses and are listed in a separate table. The total number of unique species, including distinct ionization states, is indicated in each section header.

Most of the molecules detected so far are organic. The only detected inorganic molecule with five or more atoms is SiH4.[14] Molecules larger than that all have at least one carbon atom, with no N−N or O−O bonds.[14]

Carbon monoxide is frequently used to trace the distribution of mass in molecular clouds.[15]

Diatomic (43)

AlClAluminium monochloride[16][17] 62.5
AlFAluminium monofluoride[16][18] 46
AlOAluminium monoxide[19] 43
Argonium[20][21] 37[note 1]ArH+
C2Diatomic carbon[22][23] 24
Fluoromethylidynium 31CF+[24]
CHMethylidyne radical[25][26] 13CH+[27]
CNCyano radical[16][26][28][29] 26CN+,[30] CN[31]
COCarbon monoxide[16][32][33] 28CO+[34]
CPCarbon monophosphide[29] 43
CSCarbon monosulfide[16] 44
FeOIron(II) oxide[35] 82
Helium hydride ion[36][37] 5HeH+
H2Molecular hydrogen[5] 2
HClHydrogen chloride[38] 36.5HCl+[39]
HFHydrogen fluoride[40] 20
HOHydroxyl radical[16] 17OH+[41]
KClPotassium chloride[16][17] 75.5
NHImidogen radical[42][43] 15
N2Molecular nitrogen[44][45] 28
NONitric oxide[46] 30NO+[30]
NSNitrogen sulfide[16] 46
NaClSodium chloride[16][17] 58.5
Magnesium monohydride cation 25.3MgH+[30]
O2Molecular oxygen[47] 32
PNPhosphorus mononitride[48][49] 45
POPhosphorus monoxide[50] 47
SHSulfur monohydride[51] 33SH+[52]
SOSulfur monoxide[16] 48SO+[27]
SiCCarborundum[16][53] 40
SiN[54] 42
SiOSilicon monoxide[16] 44
SiSSilicon monosulfide[16] 60
TiOTitanium(II) oxide[55] 63.9
The H+
cation is one of the most abundant ions in the universe. It was first detected in 1993.[56][57]

Triatomic (44)

AlNCAluminium isocyanide[16] 53
AlOHAluminium hydroxide[58] 44
C3Tricarbon[59][60] 36
C2HEthynyl radical[16][28] 25
CCNCyanomethylidyne[61] 38
C2ODicarbon monoxide[62] 40
C2SThioxoethenylidene[63] 56
C2P[64] 55
CO2Carbon dioxide[65] 44
CaNCCalcium isocyanide[66] 92
FeCNIron cyanide[67] 82
Protonated molecular hydrogen 3H+
H2CMethylene radical[68] 14
Chloronium 37.5H2Cl+[69]
H2OWater[70] 18H2O+[71]
HO2Hydroperoxyl[72] 33
H2SHydrogen sulfide[16] 34
HCNHydrogen cyanide[16][28][73] 27
HNCHydrogen isocyanide[74][75] 27
HCOFormyl radical[76] 29HCO+[27][76][77]
HCPPhosphaethyne[78] 44
HCSThioformyl[79] 45HCS+[27][77]
Diazenylium[77][27][80] 29HN+
HNONitroxyl[81] 31
Isoformyl 29HOC+[28]
HSCIsothioformyl[79] 45
KCNPotassium cyanide[16] 65
MgCNMagnesium cyanide[16] 50
MgNCMagnesium isocyanide[16] 50
NH2Amino radical[82] 16
N2ONitrous oxide[83] 44
NaCNSodium cyanide[16] 49
NaOHSodium hydroxide[84] 40
OCSCarbonyl sulfide[85] 60
O3Ozone[86] 48
SO2Sulfur dioxide[16][87] 64
c-SiC2c-Silicon dicarbide[16][53] 52
SiCSiDisilicon carbide[88] 68
SiCNSilicon carbonitride[89] 54
SiNC[90] 54
TiO2Titanium dioxide[55] 79.9
Formaldehyde is an organic molecule that is widely distributed in the interstellar medium.[91]

Four atoms (30)

CH3Methyl radical[92] 15
l-C3HPropynylidyne[16][93] 37l-C3H+[94]
c-C3HCyclopropynylidyne[95] 37
C3NCyanoethynyl[96] 50C3N[97]
C3OTricarbon monoxide[93] 52
C3STricarbon sulfide[16][63] 68
Hydronium 19H3O+[98]
C2H2Acetylene[99] 26
H2CNMethylene amidogen[100] 28H2CN+[27]
H2NCAminocarbyne[101] 28
H2COFormaldehyde[91] 30
H2CSThioformaldehyde[102] 46
HCCN[103] 39
HCCOKetenyl[104] 41
Protonated hydrogen cyanide 28HCNH+[77]
Protonated carbon dioxide 45HOCO+[105]
HCNOFulminic acid[106] 43
HOCNCyanic acid[107] 43
CNCNIsocyanogen[108] 52
HOOHHydrogen peroxide[109] 34
HNCOIsocyanic acid[87] 43
HNCNCyanomidyl radical[110] 41
HNCSIsothiocyanic acid[111] 59
NH3Ammonia[16][112] 17
HSCNThiocyanic acid[113] 59
SiC3Silicon tricarbide[16]  64
HMgNCHydromagnesium isocyanide[114]  51.3
HNO2Nitrous acid[115] 47
Methane, the primary component of natural gas, has also been detected on comets and in the atmosphere of several planets in the Solar System.[116]

Five atoms (20)

Ammonium ion 18NH+
CH4Methane[119] 16
CH3OMethoxy radical[120] 31
c-C3H2Cyclopropenylidene[28][121][122] 38
l-H2C3Propadienylidene[122] 38
H2CCNCyanomethyl[123] 40
H2C2OKetene[87] 42
H2CNHMethylenimine[124] 29
HNCNHCarbodiimide[125] 42
Protonated formaldehyde 31H2COH+[126]
C4HButadiynyl[16] 49C4H[127]
HC3NCyanoacetylene[16][28][77][128][129] 51
HCC-NCIsocyanoacetylene[130] 51
HCOOHFormic acid[131][128] 46
NH2CNCyanamide[132][133] 42
NH2OHHydroxylamine[134] 37
Protonated cyanogen 53NCCNH+[135]
HC(O)CNCyanoformaldehyde[136] 55
C5Linear C5[137] 60
SiC4Silicon-carbide cluster[53] 92
SiH4Silane[138] 32
In the ISM, formamide (above) can combine with methylene to form acetamide.[139]

Six atoms (16)

c-H2C3OCyclopropenone[140] 54
E-HNCHCNE-Cyanomethanimine[141] 54
C2H4Ethylene[142] 28
CH3CNAcetonitrile[87][143][144] 40
CH3NCMethyl isocyanide[143] 40
CH3OHMethanol[87][145] 32
CH3SHMethanethiol[146] 48
l-H2C4Diacetylene[16][147] 50
Protonated cyanoacetylene 52HC3NH+[77]
HCONH2Formamide[139] 44
C5HPentynylidyne[16][63] 61
C5NCyanobutadiynyl radical[148] 74
HC2CHOPropynal[149] 54
HC4N[16]  63
CH2CNHKetenimine[121] 40
C5S[150] 92
Acetaldehyde (above) and its isomers vinyl alcohol and ethylene oxide have all been detected in interstellar space.[151]

Seven atoms (13)

c-C2H4OEthylene oxide[152] 44
CH3C2HMethylacetylene[28] 40
H3CNH2Methylamine[153] 31
CH2CHCNAcrylonitrile[87][143] 53
HCCCHNHPropargylimine[154] 53
H2CHCOHVinyl alcohol[151] 44
C6HHexatriynyl radical[16][63] 73C6H[122][155]
HC4CNCyanodiacetylene[87][129][143] 75
HC4NCIsocyanodiacetylene[156] 75
HC5O[157] 77
CH3CHOAcetaldehyde[16][152] 44
CH3NCOMethyl isocyanate[158] 57
HOCH2CNGlycolonitrile[159] 57
The radio signature of acetic acid, a compound found in vinegar, was confirmed in 1997.[160]

Eight atoms (14)

H3CC2CNMethylcyanoacetylene[161] 65
HC3H2CNPropargyl cyanide[162] 65
H2COHCHOGlycolaldehyde[163][164] 60
(CHOH)21,2-ethenediol[165] 60
HCOOCH3Methyl formate[87][128][164] 60
CH3COOHAcetic acid[160] 60
H2C6Hexapentaenylidene[16][147] 74
CH2CHCHOPropenal[121] 56
CH2CCHCNCyanoallene[121][161] 65
CH3CHNHEthanimine[166] 43
C2H3NH2Vinylamine[167] 43
C7HHeptatrienyl radical[168] 85
NH2CH2CNAminoacetonitrile[169] 56
(NH2)2COUrea[170] 60

Nine atoms (10)

CH3C4HMethyldiacetylene[171] 64
CH3OCH3Dimethyl ether[172] 46
CH3CH2CNPropionitrile[16][87][143] 55
CH3CONH2Acetamide[121][139][133] 59
CH3CH2OHEthanol[173] 46
C8HOctatetraynyl radical[174] 97C8H[175][176]
HC7NCyanohexatriyne or Cyanotriacetylene[16][112][177][178] 99
CH3CHCH2Propylene (propene)[179] 42
CH3CH2SHEthyl mercaptan[180] 62
A number of polyyne-derived chemicals are among the heaviest molecules found in the interstellar medium.

Ten or more atoms (21)

10(CH3)2COAcetone[87][181] 58
10(CH2OH)2Ethylene glycol[182][183] 62
10CH3CH2CHOPropanal[121] 58
10CH3OCH2OHMethoxymethanol[184] 62
10CH3C5NMethylcyanodiacetylene[121] 89
10CH3CHCH2OPropylene oxide[185] 58
11NH2CH2CH2OHEthanolamine[186] 61
11HC8CNCyanotetraacetylene[16][177] 123
11C2H5OCHOEthyl formate[187] 74
11CH3COOCH3Methyl acetate[188] 74
11CH3C6HMethyltriacetylene[121][171] 88
12C6H6Benzene[147] 78
12C3H7CNn-Propyl cyanide[187] 69
12(CH3)2CHCNiso-Propyl cyanide[189][190] 69
Benzonitrile[191] 104
13HC10CNCyanopentaacetylene[177] 147
17C9H8Indene[9] 116
19C10H7CN1-cyanonaphthalene[8] 153
19C10H7CN2-cyanonaphthalene[8] 153
(C60 fullerene)
70C70C70 fullerene[192]840

Deuterated molecules (22)

These molecules all contain one or more deuterium atoms, a heavier isotope of hydrogen.

2HDHydrogen deuteride[196][197]
3H2D+, HD+
Trihydrogen cation[196][197]
3HDO, D2OHeavy water[198][199]
3DCNHydrogen cyanide[200]
3DCOFormyl radical[200]
3DNCHydrogen isocyanide[200]
3NHD, ND2Amidogen[201] 
4NH2D, NHD2, ND3Ammonia[197][202][203]
4HDCO, D2COFormaldehyde[197][204]
4DNCOIsocyanic acid[205]
5NH3D+Ammonium ion[206][207]
7CH2DCCH, CH3CCDMethylacetylene[208][209]

Unconfirmed (13)

Evidence for the existence of the following molecules has been reported in the scientific literature, but the detections either are described as tentative by the authors, or have been challenged by other researchers. They await independent confirmation.

4MgCCHMagnesium monoacetylide[150]
4SiH3CNSilyl cyanide[150]
12C2H5OCH3Ethyl methyl ether[216]
Naphthalene cation[217]

See also


  1. Shu, Frank H. (1982), The Physical Universe: An Introduction to Astronomy, University Science Books, ISBN 978-0-935702-05-7
  2. Chaffee, Frederick H.; Lutz, Barry L.; Black, John H.; Vanden Bout, Paul A.; Snell, Ronald L. (1980). "Rotational fine-structure lines of interstellar C2 toward Zeta Persei". The Astrophysical Journal. 236: 474. Bibcode:1980ApJ...236..474C. doi:10.1086/157764.
  3. McGuire, Brett A. (2018). "2018 Census of Interstellar, Circumstellar, Extragalactic, Protoplanetary Disk, and Exoplanetary Molecules". The Astrophysical Journal Supplement Series. 239 (2): 17. arXiv:1809.09132. Bibcode:2018ApJS..239...17M. doi:10.3847/1538-4365/aae5d2. S2CID 119522774.
  4. Woon, D. E. (May 2005), Methylidyne radical, The Astrochemist, retrieved 2007-02-13
  5. Carruthers, George R. (1970), "Rocket Observation of Interstellar Molecular Hydrogen", Astrophysical Journal, 161: L81–L85, Bibcode:1970ApJ...161L..81C, doi:10.1086/180575
  6. Leger, A.; Puget, J. L. (1984). "Identification of the "unidentified" IR emission features of interstellar dust ?". Astronomy and Astrophysics. 137: L5. Bibcode:1984A&A...137L...5L.
  7. Tielens, A.G.G.M. (2008). "Interstellar Polycyclic Aromatic Hydrocarbon Molecules". Annual Review of Astronomy and Astrophysics. 46: 289–337. Bibcode:2008ARA&A..46..289T. doi:10.1146/annurev.astro.46.060407.145211.
  8. McGuire, Brett A.; Loomis, Ryan A.; Burkhardt, Andrew M.; Lee, Kin Long Kelvin; Shingledecker, Christopher N.; Charnley, Steven B.; Cooke, Ilsa R.; Cordiner, Martin A.; Herbst, Eric; Kalenskii, Sergei; Siebert, Mark A.; Willis, Eric R.; Xue, Ci; Remijan, Anthony J.; McCarthy, Michael C. (19 March 2021). "Detection of two interstellar polycyclic aromatic hydrocarbons via spectral matched filtering". Science. 371 (6535): 1265–1269. arXiv:2103.09984. Bibcode:2021Sci...371.1265M. doi:10.1126/science.abb7535. PMID 33737489. S2CID 232269920.
  9. Burkhardt, Andrew M.; Long Kelvin Lee, Kin; Bryan Changala, P.; Shingledecker, Christopher N.; Cooke, Ilsa R.; Loomis, Ryan A.; Wei, Hongji; Charnley, Steven B.; Herbst, Eric; McCarthy, Michael C.; McGuire, Brett A. (1 June 2021). "Discovery of the Pure Polycyclic Aromatic Hydrocarbon Indene (c-C9H8) with GOTHAM Observations of TMC-1". The Astrophysical Journal Letters. 913 (2): L18. arXiv:2104.15117. Bibcode:2021ApJ...913L..18B. doi:10.3847/2041-8213/abfd3a. S2CID 233476519.
  10. Cummins, S. E.; Linke, R. A.; Thaddeus, P. (1986), "A survey of the millimeter-wave spectrum of Sagittarius B2", Astrophysical Journal Supplement Series, 60: 819–878, Bibcode:1986ApJS...60..819C, doi:10.1086/191102
  11. Kaler, James B. (2002), The hundred greatest stars, Copernicus Series, Springer, ISBN 978-0-387-95436-3, retrieved 2011-05-09
  12. Brown, Laurie M.; Pais, Abraham; Pippard, A. B. (1995), "The physics of the interstellar medium", Twentieth Century Physics (2nd ed.), CRC Press, p. 1765, ISBN 978-0-7503-0310-1
  13. Dalgarno, A. (2006), "Interstellar Chemistry Special Feature: The galactic cosmic ray ionization rate", Proceedings of the National Academy of Sciences, 103 (33): 12269–12273, Bibcode:2006PNAS..10312269D, doi:10.1073/pnas.0602117103, PMC 1567869, PMID 16894166
  14. Klemperer, William (2011), "Astronomical Chemistry", Annual Review of Physical Chemistry, 62: 173–184, Bibcode:2011ARPC...62..173K, doi:10.1146/annurev-physchem-032210-103332, PMID 21128763
  15. The Structure of Molecular Cloud Cores, Centre for Astrophysics and Planetary Science, University of Kent, retrieved 2007-02-16
  16. Ziurys, Lucy M. (2006), "The chemistry in circumstellar envelopes of evolved stars: Following the origin of the elements to the origin of life", Proceedings of the National Academy of Sciences, 103 (33): 12274–12279, Bibcode:2006PNAS..10312274Z, doi:10.1073/pnas.0602277103, PMC 1567870, PMID 16894164
  17. Cernicharo, J.; Guelin, M. (1987), "Metals in IRC+10216 - Detection of NaCl, AlCl, and KCl, and tentative detection of AlF", Astronomy and Astrophysics, 183 (1): L10–L12, Bibcode:1987A&A...183L..10C
  18. Ziurys, L. M.; Apponi, A. J.; Phillips, T. G. (1994), "Exotic fluoride molecules in IRC +10216: Confirmation of AlF and searches for MgF and CaF", Astrophysical Journal, 433 (2): 729–732, Bibcode:1994ApJ...433..729Z, doi:10.1086/174682
  19. Tenenbaum, E. D.; Ziurys, L. M. (2009), "Millimeter Detection of AlO (X2Σ+): Metal Oxide Chemistry in the Envelope of VY Canis Majoris", Astrophysical Journal, 694 (1): L59–L63, Bibcode:2009ApJ...694L..59T, doi:10.1088/0004-637X/694/1/L59
  20. Barlow, M. J.; Swinyard, B. M.; Owen, P. J.; Cernicharo, J.; Gomez, H. L.; Ivison, R. J.; Lim, T. L.; Matsuura, M.; Miller, S.; Olofsson, G.; Polehampton, E. T. (2013), "Detection of a Noble Gas Molecular Ion, 36ArH+, in the Crab Nebula", Science, 342 (6164): 1343–1345, arXiv:1312.4843, Bibcode:2013Sci...342.1343B, doi:10.1126/science.1243582, PMID 24337290, S2CID 37578581
  21. Quenqua, Douglas (13 December 2013). "Noble Molecules Found in Space". New York Times. Retrieved 13 December 2013.
  22. Souza, S. P; Lutz, B. L (1977). "Detection of C2 in the interstellar spectrum of Cygnus OB2 number 12 /VI Cygni number 12/". The Astrophysical Journal. 216: L49. Bibcode:1977ApJ...216L..49S. doi:10.1086/182507.
  23. Lambert, D. L.; Sheffer, Y.; Federman, S. R. (1995), "Hubble Space Telescope observations of C2 molecules in diffuse interstellar clouds", Astrophysical Journal, 438: 740–749, Bibcode:1995ApJ...438..740L, doi:10.1086/175119
  24. Neufeld, D. A.; et al. (2006), "Discovery of interstellar CF+", Astronomy and Astrophysics, 454 (2): L37–L40, arXiv:astro-ph/0603201, Bibcode:2006A&A...454L..37N, doi:10.1051/0004-6361:200600015, S2CID 119471648
  25. Landau, Elizabeth (12 October 2016). "Building Blocks of Life's Building Blocks Come From Starlight". NASA. Retrieved 13 October 2016.
  26. Adams, Walter S. (1941), "Some Results with the COUDÉ Spectrograph of the Mount Wilson Observatory", Astrophysical Journal, 93: 11–23, Bibcode:1941ApJ....93...11A, doi:10.1086/144237
  27. Smith, D. (1988), "Formation and Destruction of Molecular Ions in Interstellar Clouds", Philosophical Transactions of the Royal Society of London, 324 (1578): 257–273, Bibcode:1988RSPTA.324..257S, doi:10.1098/rsta.1988.0016, S2CID 120128881
  28. Fuente, A.; et al. (2005), "Photon-dominated Chemistry in the Nucleus of M82: Widespread HOC+ Emission in the Inner 650 Parsec Disk", Astrophysical Journal, 619 (2): L155–L158, arXiv:astro-ph/0412361, Bibcode:2005ApJ...619L.155F, doi:10.1086/427990, S2CID 14004275
  29. Guelin, M.; Cernicharo, J.; Paubert, G.; Turner, B. E. (1990), "Free CP in IRC + 10216", Astronomy and Astrophysics, 230: L9–L11, Bibcode:1990A&A...230L...9G
  30. Dopita, Michael A.; Sutherland, Ralph S. (2003), Astrophysics of the diffuse universe, Springer-Verlag, ISBN 978-3-540-43362-0
  31. Agúndez, M.; et al. (2010-07-30), "Astronomical identification of CN, the smallest observed molecular anion", Astronomy & Astrophysics, 517: L2, arXiv:1007.0662, Bibcode:2010A&A...517L...2A, doi:10.1051/0004-6361/201015186, S2CID 67782707, retrieved 2010-09-03
  32. Khan, Amina. "Did two planets around nearby star collide? Toxic gas holds hints". LA Times. Retrieved March 9, 2014.
  33. Dent, W.R.F.; Wyatt, M.C.;Roberge, A.; Augereau, J.-C.; Casassus, S.;Corder, S.; Greaves, J.S.; de Gregorio-Monsalvo, I; Hales, A.; Jackson, A.P.; Hughes, A. Meredith; Lagrange, A.-M; Matthews, B.; Wilner, D. (March 6, 2014). "Molecular Gas Clumps from the Destruction of Icy Bodies in the β Pictoris Debris Disk". Science. 343 (6178): 1490–1492. arXiv:1404.1380. Bibcode:2014Sci...343.1490D. doi:10.1126/science.1248726. PMID 24603151. S2CID 206553853.{{cite journal}}: CS1 maint: uses authors parameter (link)
  34. Latter, W. B.; Walker, C. K.; Maloney, P. R. (1993), "Detection of the Carbon Monoxide Ion (CO+) in the Interstellar Medium and a Planetary Nebula", Astrophysical Journal Letters, 419: L97, Bibcode:1993ApJ...419L..97L, doi:10.1086/187146
  35. Furuya, R. S.; et al. (2003), "Interferometric observations of FeO towards Sagittarius B2", Astronomy and Astrophysics, 409 (2): L21–L24, Bibcode:2003A&A...409L..21F, doi:10.1051/0004-6361:20031304
  36. Fisher, Christine (17 April 2019). "NASA finally found evidence of the universe's earliest molecule - The elusive helium hydride was found 3,000 light-years away". Engadget. Retrieved 17 April 2018.
  37. Güsten, Rolf; et al. (17 April 2019). "Astrophysical detection of the helium hydride ion HeH+". Nature. 568 (7752): 357–359. arXiv:1904.09581. Bibcode:2019Natur.568..357G. doi:10.1038/s41586-019-1090-x. PMID 30996316. S2CID 119548024.
  38. Blake, G. A.; Keene, J.; Phillips, T. G. (1985), "Chlorine in dense interstellar clouds - The abundance of HCl in OMC-1" (PDF), Astrophysical Journal, Part 1, 295: 501–506, Bibcode:1985ApJ...295..501B, doi:10.1086/163394
  39. De Luca, M.; Gupta, H.; Neufeld, D.; Gerin, M.; Teyssier, D.; Drouin, B. J.; Pearson, J. C.; Lis, D. C.; et al. (2012), "Herschel/HIFI Discovery of HCl+ in the Interstellar Medium", The Astrophysical Journal Letters, 751 (2): L37, Bibcode:2012ApJ...751L..37D, doi:10.1088/2041-8205/751/2/L37, S2CID 123355062
  40. Neufeld, David A.; et al. (1997), "Discovery of Interstellar Hydrogen Fluoride", Astrophysical Journal Letters, 488 (2): L141–L144, arXiv:astro-ph/9708013, Bibcode:1997ApJ...488L.141N, doi:10.1086/310942, S2CID 14166201
  41. Wyrowski, F.; et al. (2009), "First interstellar detection of OH+", Astronomy & Astrophysics, 518: A26, arXiv:1004.2627, Bibcode:2010A&A...518A..26W, doi:10.1051/0004-6361/201014364, S2CID 119265403
  42. Meyer, D. M.; Roth, K. C. (1991), "Discovery of interstellar NH", Astrophysical Journal Letters, 376: L49–L52, Bibcode:1991ApJ...376L..49M, doi:10.1086/186100
  43. Wagenblast, R.; et al. (January 1993), "On the origin of NH in diffuse interstellar clouds", Monthly Notices of the Royal Astronomical Society, 260 (2): 420–424, Bibcode:1993MNRAS.260..420W, doi:10.1093/mnras/260.2.420
  44. Astronomers Detect Molecular Nitrogen Outside Solar System, Space Daily, June 9, 2004, retrieved 2010-06-25
  45. Knauth, D. C; et al. (2004), "The interstellar N2 abundance towards HD 124314 from far-ultraviolet observations", Nature, 429 (6992): 636–638, Bibcode:2004Natur.429..636K, doi:10.1038/nature02614, PMID 15190346, S2CID 4302582
  46. McGonagle, D.; et al. (1990), "Detection of nitric oxide in the dark cloud L134N", Astrophysical Journal, Part 1, 359 (1 Pt 1): 121–124, Bibcode:1990ApJ...359..121M, doi:10.1086/169040, PMID 11538685
  47. Staff writers (March 27, 2007), Elusive oxygen molecule finally discovered in interstellar space,, retrieved 2007-04-02
  48. Turner, B. E.; Bally, John (1987). "Detection of interstellar PN - the first identified phosphorus compound in the interstellar medium". The Astrophysical Journal. 321: L75. Bibcode:1987ApJ...321L..75T. doi:10.1086/185009.
  49. Ziurys, L. M. (1987), "Detection of interstellar PN - The first phosphorus-bearing species observed in molecular clouds", Astrophysical Journal Letters, 321 (1 Pt 2): L81–L85, Bibcode:1987ApJ...321L..81Z, doi:10.1086/185010, PMID 11542218
  50. Tenenbaum, E. D.; Woolf, N. J.; Ziurys, L. M. (2007), "Identification of phosphorus monoxide (X 2 Pi r) in VY Canis Majoris: Detection of the first PO bond in space", Astrophysical Journal Letters, 666 (1): L29–L32, Bibcode:2007ApJ...666L..29T, doi:10.1086/521361, S2CID 121424802
  51. Yamamura, S. T.; Kawaguchi, K.; Ridgway, S. T. (2000), "Identification of SH v=1 Ro-vibrational Lines in R Andromedae", The Astrophysical Journal, 528 (1): L33–L36, arXiv:astro-ph/9911080, Bibcode:2000ApJ...528L..33Y, doi:10.1086/312420, PMID 10587489, S2CID 32928458
  52. Menten, K. M.; et al. (2011), "Submillimeter Absorption from SH+, a New Widespread Interstellar Radical, 13CH+ and HCl", Astronomy & Astrophysics, 525: A77, arXiv:1009.2825, Bibcode:2011A&A...525A..77M, doi:10.1051/0004-6361/201014363, S2CID 119281811.
  53. Pascoli, G.; Comeau, M. (1995), "Silicon Carbide in Circumstellar Environment", Astrophysics and Space Science, 226 (1): 149–163, Bibcode:1995Ap&SS.226..149P, doi:10.1007/BF00626907, S2CID 121702812
  54. Turner, B. E. (1992). "Detection of SiN in IRC + 10216". The Astrophysical Journal. 388: L35. Bibcode:1992ApJ...388L..35T. doi:10.1086/186324.
  55. Kamiński, T.; et al. (2013), "Pure rotational spectra of TiO and TiO2 in VY Canis Majoris", Astronomy and Astrophysics, 551: A113, arXiv:1301.4344, Bibcode:2013A&A...551A.113K, doi:10.1051/0004-6361/201220290, S2CID 59038056
  56. Oka, Takeshi (2006), "Interstellar H3+", Proceedings of the National Academy of Sciences, 103 (33): 12235–12242, Bibcode:2006PNAS..10312235O, doi:10.1073/pnas.0601242103, PMC 1567864, PMID 16894171
  57. Geballe, T. R.; Oka, T. (1996), "Detection of H3+ in Interstellar Space", Nature, 384 (6607): 334–335, Bibcode:1996Natur.384..334G, doi:10.1038/384334a0, PMID 8934516, S2CID 4370842
  58. Tenenbaum, E. D.; Ziurys, L. M. (2010), "Exotic Metal Molecules in Oxygen-rich Envelopes: Detection of AlOH (X1Σ+) in VY Canis Majoris", Astrophysical Journal, 712 (1): L93–L97, Bibcode:2010ApJ...712L..93T, doi:10.1088/2041-8205/712/1/L93
  59. Hinkle, K. W; Keady, J. J; Bernath, P. F (1988). "Detection of C3 in the Circumstellar Shell of IRC+10216". Science. 241 (4871): 1319–22. Bibcode:1988Sci...241.1319H. doi:10.1126/science.241.4871.1319. PMID 17828935. S2CID 40349500.
  60. Maier, John P; Lakin, Nicholas M; Walker, Gordon A. H; Bohlender, David A (2001). "Detection of C3 in Diffuse Interstellar Clouds". The Astrophysical Journal. 553 (1): 267–273. arXiv:astro-ph/0102449. Bibcode:2001ApJ...553..267M. doi:10.1086/320668. S2CID 14404584.
  61. Anderson, J. K.; et al. (2014), "Detection of CCN (X2Πr) in IRC+10216: Constraining Carbon-chain Chemistry", Astrophysical Journal, 795 (1): L1, Bibcode:2014ApJ...795L...1A, doi:10.1088/2041-8205/795/1/L1, S2CID 94778638
  62. Ohishi, Masatoshi, Masatoshi; et al. (1991), "Detection of a new carbon-chain molecule, CCO", Astrophysical Journal Letters, 380: L39–L42, Bibcode:1991ApJ...380L..39O, doi:10.1086/186168, PMID 11538087
  63. Irvine, William M.; et al. (1988), "Newly detected molecules in dense interstellar clouds", Astrophysical Letters and Communications, 26: 167–180, Bibcode:1988ApL&C..26..167I, PMID 11538461
  64. Halfen, D. T.; Clouthier, D. J.; Ziurys, L. M. (2008), "Detection of the CCP Radical (X 2Πr) in IRC +10216: A New Interstellar Phosphorus-containing Species", Astrophysical Journal, 677 (2): L101–L104, Bibcode:2008ApJ...677L.101H, doi:10.1086/588024
  65. Whittet, Douglas C. B.; Walker, H. J. (1991), "On the occurrence of carbon dioxide in interstellar grain mantles and ion-molecule chemistry", Monthly Notices of the Royal Astronomical Society, 252: 63–67, Bibcode:1991MNRAS.252...63W, doi:10.1093/mnras/252.1.63
  66. Cernicharo, J.; Velilla-Prieto, L.; Agúndez, M.; Pardo, J. R.; Fonfría, J. P.; Quintana-Lacaci, G.; Cabezas, C.; Bermúdez, C.; Guélin, M. (2019). "Discovery of the first Ca-bearing molecule in space: CaNC". Astronomy & Astrophysics. 627: L4. arXiv:1906.09352. Bibcode:2019A&A...627L...4C. doi:10.1051/0004-6361/201936040. PMC 6640036. PMID 31327871.
  67. Zack, L. N.; Halfen, D. T.; Ziurys, L. M. (June 2011), "Detection of FeCN (X 4Δi) in IRC+10216: A New Interstellar Molecule", The Astrophysical Journal Letters, 733 (2): L36, Bibcode:2011ApJ...733L..36Z, doi:10.1088/2041-8205/733/2/L36
  68. Hollis, J. M.; Jewell, P. R.; Lovas, F. J. (1995), "Confirmation of interstellar methylene", Astrophysical Journal, Part 1, 438: 259–264, Bibcode:1995ApJ...438..259H, doi:10.1086/175070
  69. Lis, D. C.; et al. (2010-10-01), "Herschel/HIFI discovery of interstellar chloronium (H2Cl+)", Astronomy & Astrophysics, 521: L9, arXiv:1007.1461, Bibcode:2010A&A...521L...9L, doi:10.1051/0004-6361/201014959, S2CID 43898052.
  70. "Europe's space telescope ISO finds water in distant places", XMM-Newton Press Release: 12, April 29, 1997, Bibcode:1997xmm..pres...12., archived from the original on December 22, 2006, retrieved 2007-02-08
  71. Ossenkopf, V.; et al. (2010), "Detection of interstellar oxidaniumyl: Abundant H2O+ towards the star-forming regions DR21, Sgr B2, and NGC6334", Astronomy & Astrophysics, 518: L111, arXiv:1005.2521, Bibcode:2010A&A...518L.111O, doi:10.1051/0004-6361/201014577, S2CID 85444481.
  72. Parise, B.; Bergman, P.; Du, F. (2012), "Detection of the hydroperoxyl radical HO2 toward ρ Ophiuchi A. Additional constraints on the water chemical network", Astronomy & Astrophysics Letters, 541: L11–L14, arXiv:1205.0361, Bibcode:2012A&A...541L..11P, doi:10.1051/0004-6361/201219379, S2CID 40297948
  73. Snyder, L. E.; Buhl, D. (1971), "Observations of Radio Emission from Interstellar Hydrogen Cyanide", Astrophysical Journal, 163: L47–L52, Bibcode:1971ApJ...163L..47S, doi:10.1086/180664
  74. Schilke, P.; Benford, D. J.; Hunter, T. R.; Lis, D. C., Phillips, T. G.; Phillips, T. G. (2001), "A Line Survey of Orion-KL from 607 to 725 GHz", Astrophysical Journal Supplement Series, 132 (2): 281–364, Bibcode:2001ApJS..132..281S, doi:10.1086/318951
  75. Schilke, P.; Comito, C.; Thorwirth, S. (2003), "First Detection of Vibrationally Excited HNC in Space", The Astrophysical Journal, 582 (2): L101–L104, Bibcode:2003ApJ...582L.101S, doi:10.1086/367628
  76. Schenewerk, M. S.; Snyder, L. E.; Hjalmarson, A. (1986), "Interstellar HCO - Detection of the missing 3 millimeter quartet", Astrophysical Journal Letters, 303: L71–L74, Bibcode:1986ApJ...303L..71S, doi:10.1086/184655
  77. Kawaguchi, Kentarou; et al. (1994), "Detection of a new molecular ion HC3NH(+) in TMC-1", Astrophysical Journal, 420: L95, Bibcode:1994ApJ...420L..95K, doi:10.1086/187171
  78. Agúndez, M.; Cernicharo, J.; Guélin, M. (2007), "Discovery of Phosphaethyne (HCP) in Space: Phosphorus Chemistry in Circumstellar Envelopes", The Astrophysical Journal, 662 (2): L91, Bibcode:2007ApJ...662L..91A, doi:10.1086/519561, hdl:10261/191973, S2CID 96978664
  79. Agúndez, M; Marcelino, N; Cernicharo, J; Tafalla, M (2018). "Detection of interstellar HCS and its metastable isomer HSC: New pieces in the puzzle of sulfur chemistry". Astronomy & Astrophysics. 611: L1. arXiv:1802.09401. Bibcode:2018A&A...611L...1A. doi:10.1051/0004-6361/201832743. PMC 6031296. PMID 29983448.
  80. Womack, M.; Ziurys, L. M.; Wyckoff, S. (1992), "A survey of N2H(+) in dense clouds - Implications for interstellar nitrogen and ion-molecule chemistry", Astrophysical Journal, Part 1, 387: 417–429, Bibcode:1992ApJ...387..417W, doi:10.1086/171094
  81. Hollis, J. M.; et al. (1991), "Interstellar HNO: Confirming the Identification - Atoms, ions and molecules: New results in spectral line astrophysics", Atoms, 16: 407–412, Bibcode:1991ASPC...16..407H
  82. van Dishoeck, Ewine F.; et al. (1993), "Detection of the Interstellar NH 2 Radical", Astrophysical Journal Letters, 416: L83–L86, Bibcode:1993ApJ...416L..83V, doi:10.1086/187076, hdl:1887/2194
  83. Ziurys, L. M.; et al. (1994), "Detection of interstellar N2O: A new molecule containing an N-O bond", Astrophysical Journal Letters, 436: L181–L184, Bibcode:1994ApJ...436L.181Z, doi:10.1086/187662
  84. Hollis, J. M.; Rhodes, P. J. (November 1, 1982), "Detection of interstellar sodium hydroxide in self-absorption toward the galactic center", Astrophysical Journal Letters, 262: L1–L5, Bibcode:1982ApJ...262L...1H, doi:10.1086/183900
  85. Goldsmith, P. F.; Linke, R. A. (1981), "A study of interstellar carbonyl sulfide", Astrophysical Journal, Part 1, 245: 482–494, Bibcode:1981ApJ...245..482G, doi:10.1086/158824
  86. Phillips, T. G.; Knapp, G. R. (1980), "Interstellar Ozone", American Astronomical Society Bulletin, 12: 440, Bibcode:1980BAAS...12..440P
  87. Johansson, L. E. B.; et al. (1984), "Spectral scan of Orion A and IRC+10216 from 72 to 91 GHz", Astronomy and Astrophysics, 130 (2): 227–256, Bibcode:1984A&A...130..227J
  88. Cernicharo, José; et al. (2015), "Discovery of SiCSi in IRC+10216: a Missing Link Between Gas and Dust Carriers OF Si–C Bonds", Astrophysical Journal Letters, 806 (1): L3, arXiv:1505.01633, Bibcode:2015ApJ...806L...3C, doi:10.1088/2041-8205/806/1/L3, PMC 4693961, PMID 26722621
  89. Guélin, M.; et al. (2004), "Astronomical detection of the free radical SiCN", Astronomy and Astrophysics, 363: L9–L12, Bibcode:2000A&A...363L...9G
  90. Guélin, M.; et al. (2004), "Detection of the SiNC radical in IRC+10216", Astronomy and Astrophysics, 426 (2): L49–L52, Bibcode:2004A&A...426L..49G, doi:10.1051/0004-6361:200400074
  91. Snyder, Lewis E.; et al. (1999), "Microwave Detection of Interstellar Formaldehyde", Physical Review Letters, 61 (2): 77–115, Bibcode:1969PhRvL..22..679S, doi:10.1103/PhysRevLett.22.679
  92. Feuchtgruber, H.; et al. (June 2000), "Detection of Interstellar CH3", The Astrophysical Journal, 535 (2): L111–L114, arXiv:astro-ph/0005273, Bibcode:2000ApJ...535L.111F, doi:10.1086/312711, PMID 10835311, S2CID 9194055
  93. Irvine, W. M.; et al. (1984), "Confirmation of the Existence of Two New Interstellar Molecules: C3H and C3O", Bulletin of the American Astronomical Society, 16: 877, Bibcode:1984BAAS...16..877I
  94. Pety, J.; et al. (2012), "The IRAM-30 m line survey of the Horsehead PDR. II. First detection of the l-C3MH+ hydrocarbon cation", Astronomy & Astrophysics, 548: A68, arXiv:1210.8178, Bibcode:2012A&A...548A..68P, doi:10.1051/0004-6361/201220062, S2CID 56425162
  95. Mangum, J. G.; Wootten, A. (1990), "Observations of the cyclic C3H radical in the interstellar medium", Astronomy and Astrophysics, 239: 319–325, Bibcode:1990A&A...239..319M
  96. Bell, M. B.; Matthews, H. E. (1995), "Detection of C3N in the spiral arm gas clouds in the direction of Cassiopeia A", Astrophysical Journal, Part 1, 438: 223–225, Bibcode:1995ApJ...438..223B, doi:10.1086/175066
  97. Thaddeus, P.; et al. (2008), "Laboratory and Astronomical Detection of the Negative Molecular Ion C3N-", The Astrophysical Journal, 677 (2): 1132–1139, Bibcode:2008ApJ...677.1132T, doi:10.1086/528947
  98. Wootten, Alwyn; et al. (1991), "Detection of interstellar H3O(+) - A confirming line", Astrophysical Journal Letters, 380: L79–L83, Bibcode:1991ApJ...380L..79W, doi:10.1086/186178
  99. Ridgway, S. T.; et al. (1976), "Circumstellar acetylene in the infrared spectrum of IRC+10216", Nature, 264 (5584): 345, 346, Bibcode:1976Natur.264..345R, doi:10.1038/264345a0, S2CID 4181772
  100. Ohishi, Masatoshi; et al. (1994), "Detection of a new interstellar molecule, H2CN", Astrophysical Journal Letters, 427 (1): L51–L54, Bibcode:1994ApJ...427L..51O, doi:10.1086/187362, PMID 11539493
  101. Cabezas, C.; Agúndez, M.; Marcelino, N.; Tercero, B.; Cuadrado, S.; Cernicharo, J. (October 2021). "Interstellar detection of the simplest aminocarbyne H2NC: an ignored but abundant molecule". Astronomy & Astrophysics. 654: A45. arXiv:2107.08389. Bibcode:2021A&A...654A..45C. doi:10.1051/0004-6361/202141491. S2CID 236088117.
  102. Minh, Y. C.; Irvine, W. M.; Brewer, M. K. (1991), "H2CS abundances and ortho-to-para ratios in interstellar clouds", Astronomy and Astrophysics, 244: 181–189, Bibcode:1991A&A...244..181M, PMID 11538284
  103. Guelin, M.; Cernicharo, J. (1991), "Astronomical detection of the HCCN radical - Toward a new family of carbon-chain molecules?", Astronomy and Astrophysics, 244: L21–L24, Bibcode:1991A&A...244L..21G
  104. Agúndez, M.; et al. (2015), "Discovery of interstellar ketenyl (HCCO), a surprisingly abundant radical", Astronomy and Astrophysics, 577: L5, arXiv:1504.05721, Bibcode:2015A&A...577L...5A, doi:10.1051/0004-6361/201526317, PMC 4693959, PMID 26722130
  105. Minh, Y. C.; Irvine, W. M.; Ziurys, L. M. (1988), "Observations of interstellar HOCO(+) - Abundance enhancements toward the Galactic center", Astrophysical Journal, Part 1, 334 (1): 175–181, Bibcode:1988ApJ...334..175M, doi:10.1086/166827, PMID 11538465
  106. Marcelino, Núria; et al. (2009), "Discovery of fulminic acid, HCNO, in dark clouds", Astrophysical Journal, 690 (1): L27–L30, arXiv:0811.2679, Bibcode:2009ApJ...690L..27M, doi:10.1088/0004-637X/690/1/L27, S2CID 16009836
  107. Brünken, S.; et al. (2010-07-22), "Interstellar HOCN in the Galactic center region", Astronomy & Astrophysics, 516: A109, arXiv:1005.2489, Bibcode:2010A&A...516A.109B, doi:10.1051/0004-6361/200912456, S2CID 55371600
  108. Agúndez, M; Marcelino, N; Cernicharo, J (2018). "Discovery of Interstellar Isocyanogen (CNCN): Further Evidence that Dicyanopolyynes Are Abundant in Space". The Astrophysical Journal. 861 (2): L22. arXiv:1806.10328. Bibcode:2018ApJ...861L..22A. doi:10.3847/2041-8213/aad089. PMC 6120679. PMID 30186588.
  109. Bergman; Parise; Liseau; Larsson; Olofsson; Menten; Güsten (2011), "Detection of interstellar hydrogen peroxide", Astronomy & Astrophysics, 531: L8, arXiv:1105.5799, Bibcode:2011A&A...531L...8B, doi:10.1051/0004-6361/201117170, S2CID 54611741.
  110. Rivilla, V. M.; Jiménez-Serra, I.; García De La Concepción, J.; Martín-Pintado, J.; Colzi, L.; Rodríguez-Almeida, L. F.; Tercero, B.; Rico-Villas, F.; Zeng, S.; Martín, S.; Requena-Torres, M. A.; De Vicente, P. (2021). "Detection of the cyanomidyl radical (HNCN): A new interstellar species with the NCN backbone". Monthly Notices of the Royal Astronomical Society: Letters. 506 (1): L79–L84. arXiv:2106.09652. Bibcode:2021MNRAS.506L..79R. doi:10.1093/mnrasl/slab074.
  111. Frerking, M. A.; Linke, R. A.; Thaddeus, P. (1979), "Interstellar isothiocyanic acid", Astrophysical Journal Letters, 234: L143–L145, Bibcode:1979ApJ...234L.143F, doi:10.1086/183126
  112. Nguyen-Q-Rieu; Graham, D.; Bujarrabal, V. (1984), "Ammonia and cyanotriacetylene in the envelopes of CRL 2688 and IRC + 10216", Astronomy and Astrophysics, 138 (1): L5–L8, Bibcode:1984A&A...138L...5N
  113. Halfen, D. T.; et al. (September 2009), "Detection of a New Interstellar Molecule: Thiocyanic Acid HSCN", The Astrophysical Journal Letters, 702 (2): L124–L127, Bibcode:2009ApJ...702L.124H, doi:10.1088/0004-637X/702/2/L124
  114. Cabezas, C.; et al. (2013), "Laboratory and Astronomical Discovery of Hydromagnesium Isocyanide", Astrophysical Journal, 775 (2): 133, arXiv:1309.0371, Bibcode:2013ApJ...775..133C, doi:10.1088/0004-637X/775/2/133, S2CID 118694017
  115. Coutens, A.; Ligterink, N. F. W.; Loison, J.-C.; Wakelam, V.; Calcutt, H.; Drozdovskaya, M. N.; Jørgensen, J. K.; Müller, H. S. P.; Van Dishoeck, E. F.; Wampfler, S. F. (2019). "The ALMA-PILS survey: First detection of nitrous acid (HONO) in the interstellar medium". Astronomy & Astrophysics. 623: L13. arXiv:1903.03378. Bibcode:2019A&A...623L..13C. doi:10.1051/0004-6361/201935040. S2CID 119274002.
  116. Butterworth, Anna L.; et al. (2004), "Combined element (H and C) stable isotope ratios of methane in carbonaceous chondrites", Monthly Notices of the Royal Astronomical Society, 347 (3): 807–812, Bibcode:2004MNRAS.347..807B, doi:10.1111/j.1365-2966.2004.07251.x
  117. H. S. P. Müller (2013). "On Ammonium, NH4+, in the ISM". Retrieved 2022-05-25.
  118. Cernicharo, J.; Tercero, B.; Fuente, A.; Domenech, J. L.; Cueto, M.; Carrasco, E.; Herrero, V. J.; Tanarro, I.; Marcelino, N.; Roueff, E.; Gerin, M.; Pearson, J. (18 June 2013). "Detection of the Ammonium Ion in Space". The Astrophysical Journal. 771 (1): L10. arXiv:1306.3364. Bibcode:2013ApJ...771L..10C. doi:10.1088/2041-8205/771/1/L10. S2CID 118461954.
  119. Lacy, J. H.; et al. (1991), "Discovery of interstellar methane - Observations of gaseous and solid CH4 absorption toward young stars in molecular clouds", Astrophysical Journal, 376: 556–560, Bibcode:1991ApJ...376..556L, doi:10.1086/170304
  120. Cernicharo, J.; Marcelino, N.; Roueff, E.; Gerin, M.; Jiménez-Escobar, A.; Muñoz Caro, G. M. (2012), "Discovery of the Methoxy Radical, CH3O, toward B1: Dust Grain and Gas-phase Chemistry in Cold Dark Clouds", The Astrophysical Journal Letters, 759 (2): L43–L46, Bibcode:2012ApJ...759L..43C, doi:10.1088/2041-8205/759/2/L43, S2CID 95954921
  121. Finley, Dave (August 7, 2006), "Researchers Use NRAO Telescope to Study Formation Of Chemical Precursors to Life", NRAO Press Release: 9, Bibcode:2006nrao.pres....9., retrieved 2006-08-10
  122. Fossé, David; et al. (2001), "Molecular Carbon Chains and Rings in TMC-1", Astrophysical Journal, 552 (1): 168–174, arXiv:astro-ph/0012405, Bibcode:2001ApJ...552..168F, doi:10.1086/320471, S2CID 16107034
  123. Irvine, W. M.; et al. (1988), "Identification of the interstellar cyanomethyl radical (CH2CN) in the molecular clouds TMC-1 and Sagittarius B2", Astrophysical Journal Letters, 334 (2): L107–L111, Bibcode:1988ApJ...334L.107I, doi:10.1086/185323, PMID 11538463
  124. Dickens, J. E.; et al. (1997), "Hydrogenation of Interstellar Molecules: A Survey for Methylenimine (CH2NH)", Astrophysical Journal, 479 (1 Pt 1): 307–12, Bibcode:1997ApJ...479..307D, doi:10.1086/303884, PMID 11541227
  125. McGuire, B.A.; et al. (2012), "Interstellar Carbodiimide (HNCNH): A New Astronomical Detection from the GBT PRIMOS Survey via Maser Emission Features", The Astrophysical Journal Letters, 758 (2): L33–L38, arXiv:1209.1590, Bibcode:2012ApJ...758L..33M, doi:10.1088/2041-8205/758/2/L33, S2CID 26146516
  126. Ohishi, Masatoshi; et al. (1996), "Detection of a New Interstellar Molecular Ion, H2COH+ (Protonated Formaldehyde)", Astrophysical Journal, 471 (1): L61–4, Bibcode:1996ApJ...471L..61O, doi:10.1086/310325, PMID 11541244
  127. Cernicharo, J.; et al. (2007), "Astronomical detection of C4H, the second interstellar anion", Astronomy and Astrophysics, 61 (2): L37–L40, Bibcode:2007A&A...467L..37C, doi:10.1051/0004-6361:20077415
  128. Liu, S.-Y.; Mehringer, D. M.; Snyder, L. E. (2001), "Observations of Formic Acid in Hot Molecular Cores", Astrophysical Journal, 552 (2): 654–663, Bibcode:2001ApJ...552..654L, doi:10.1086/320563
  129. Walmsley, C. M.; Winnewisser, G.; Toelle, F. (1990), "Cyanoacetylene and cyanodiacetylene in interstellar clouds", Astronomy and Astrophysics, 81 (1–2): 245–250, Bibcode:1980A&A....81..245W
  130. Kawaguchi, Kentarou; et al. (1992), "Detection of isocyanoacetylene HCCNC in TMC-1", Astrophysical Journal, 386 (2): L51–L53, Bibcode:1992ApJ...386L..51K, doi:10.1086/186290
  131. Zuckerman, B.; Ball, John A.; Gottlieb, Carl A. (1971). "Microwave Detection of Interstellar Formic Acid". Astrophysical Journal. 163: L41. Bibcode:1971ApJ...163L..41Z. doi:10.1086/180663.
  132. Turner, B. E.; et al. (1975), "Microwave detection of interstellar cyanamide", Astrophysical Journal, 201: L149–L152, Bibcode:1975ApJ...201L.149T, doi:10.1086/181963
  133. Ligterink, Niels F. W.; et al. (September 2020). "The Family of Amide Molecules toward NGC 6334I". The Astrophysical Journal. 901 (1): 23. arXiv:2008.09157. Bibcode:2020ApJ...901...37L. doi:10.3847/1538-4357/abad38. S2CID 221246432. 37.
  134. Rivilla, Víctor M.; Martín-Pintado, Jesús; Jiménez-Serra, Izaskun; Martín, Sergio; Rodríguez-Almeida, Lucas F.; Requena-Torres, Miguel A.; Rico-Villas, Fernando; Zeng, Shaoshan; Briones, Carlos (2020). "Prebiotic Precursors of the Primordial RNA World in Space: Detection of NH2OH". The Astrophysical Journal. 899 (2): L28. arXiv:2008.00228. Bibcode:2020ApJ...899L..28R. doi:10.3847/2041-8213/abac55. S2CID 220935710.
  135. Agúndez, M.; et al. (2015), "Probing non-polar interstellar molecules through their protonated form: Detection of protonated cyanogen (NCCNH+)", Astronomy and Astrophysics, 579: L10, arXiv:1506.07043, Bibcode:2015A&A...579L..10A, doi:10.1051/0004-6361/201526650, PMC 4630856, PMID 26543239
  136. Remijan, Anthony J.; et al. (2008), "Detection of interstellar cyanoformaldehyde (CNCHO)", Astrophysical Journal, 675 (2): L85–L88, Bibcode:2008ApJ...675L..85R, doi:10.1086/533529, S2CID 19005362
  137. Bernath, P. F; Hinkle, K. H; Keady, J. J (1989). "Detection of C5 in the Circumstellar Shell of IRC+10216". Science. 244 (4904): 562–4. Bibcode:1989Sci...244..562B. doi:10.1126/science.244.4904.562. PMID 17769400. S2CID 20960839.
  138. Goldhaber, D. M.; Betz, A. L. (1984), "Silane in IRC +10216", Astrophysical Journal Letters, 279: –L55–L58, Bibcode:1984ApJ...279L..55G, doi:10.1086/184255
  139. Hollis, J. M.; et al. (2006), "Detection of Acetamide (CH3CONH2): The Largest Interstellar Molecule with a Peptide Bond", Astrophysical Journal, 643 (1): L25–L28, Bibcode:2006ApJ...643L..25H, doi:10.1086/505110
  140. Hollis, J. M.; et al. (2006), "Cyclopropenone (c-H2C3O): A New Interstellar Ring Molecule", Astrophysical Journal, 642 (2): 933–939, Bibcode:2006ApJ...642..933H, doi:10.1086/501121
  141. Zaleski, D. P.; et al. (2013), "Detection of E-Cyanomethanimine toward Sagittarius B2(N) in the Green Bank Telescope PRIMOS Survey", Astrophysical Journal Letters, 765 (1): L109, arXiv:1302.0909, Bibcode:2013ApJ...765L..10Z, doi:10.1088/2041-8205/765/1/L10, S2CID 53552345
  142. Betz, A. L. (1981), "Ethylene in IRC +10216", Astrophysical Journal Letters, 244: –L105, Bibcode:1981ApJ...244L.103B, doi:10.1086/183490
  143. Remijan, Anthony J.; et al. (2005), "Interstellar Isomers: The Importance of Bonding Energy Differences", Astrophysical Journal, 632 (1): 333–339, arXiv:astro-ph/0506502, Bibcode:2005ApJ...632..333R, doi:10.1086/432908, S2CID 15244867
  144. "Complex Organic Molecules Discovered in Infant Star System". NRAO. Astrobiology Web. 8 April 2015. Retrieved 2015-04-09.
  145. First Detection of Methyl Alcohol in a Planet-forming Disc. 15 June 2016.
  146. Lambert, D. L.; Sheffer, Y.; Federman, S. R. (1979), "Interstellar methyl mercaptan", Astrophysical Journal Letters, 234: L139–L142, Bibcode:1979ApJ...234L.139L, doi:10.1086/183125
  147. Cernicharo, José; et al. (2001), "Infrared Space Observatory's Discovery of C4H2, C6H2, and Benzene in CRL 618", Astrophysical Journal Letters, 546 (2): L123–L126, Bibcode:2001ApJ...546L.123C, doi:10.1086/318871
  148. Guelin, M.; Neininger, N.; Cernicharo, J. (1998), "Astronomical detection of the cyanobutadiynyl radical C_5N", Astronomy and Astrophysics, 335: L1–L4, arXiv:astro-ph/9805105, Bibcode:1998A&A...335L...1G
  149. Irvine, W. M.; et al. (1988), "A new interstellar polyatomic molecule - Detection of propynal in the cold cloud TMC-1", Astrophysical Journal Letters, 335 (2): L89–L93, Bibcode:1988ApJ...335L..89I, doi:10.1086/185346, PMID 11538462
  150. Agúndez, M.; et al. (2014), "New molecules in IRC +10216: confirmation of C5S and tentative identification of MgCCH, NCCP, and SiH3CN", Astronomy and Astrophysics, 570: A45, arXiv:1408.6306, Bibcode:2014A&A...570A..45A, doi:10.1051/0004-6361/201424542, S2CID 118440180
  151. "Scientists Toast the Discovery of Vinyl Alcohol in Interstellar Space", NRAO Press Release: 16, October 1, 2001, Bibcode:2001nrao.pres...16., retrieved 2006-12-20
  152. Dickens, J. E.; et al. (1997), "Detection of Interstellar Ethylene Oxide (c-C2H4O)", The Astrophysical Journal, 489 (2): 753–757, Bibcode:1997ApJ...489..753D, doi:10.1086/304821, PMID 11541726
  153. Kaifu, N.; Takagi, K.; Kojima, T. (1975), "Excitation of interstellar methylamine", Astrophysical Journal, 198: L85–L88, Bibcode:1975ApJ...198L..85K, doi:10.1086/181818
  154. Bizzocchi, L.; Prudenzano, D.; Rivilla, V. M.; Pietropolli-Charmet, A.; Giuliano, B. M.; Caselli, P.; Martín-Pintado, J.; Jiménez-Serra, I.; Martín, S.; Requena-Torres, M. A.; Rico-Villas, F. (2020-08-01). "Propargylimine in the laboratory and in space: millimetre-wave spectroscopy and its first detection in the ISM". Astronomy & Astrophysics. 640: A98. arXiv:2006.08401. Bibcode:2020A&A...640A..98B. doi:10.1051/0004-6361/202038083. ISSN 0004-6361. S2CID 219687234.
  155. McCarthy, M. C.; et al. (2006), "Laboratory and Astronomical Identification of the Negative Molecular Ion C6H", Astrophysical Journal, 652 (2): L141–L144, Bibcode:2006ApJ...652L.141M, doi:10.1086/510238, S2CID 123232090
  156. Xue, Ci; Willis, Eric R.; Loomis, Ryan A.; Kelvin Lee, Kin Long; Burkhardt, Andrew M.; Shingledecker, Christopher N.; Charnley, Steven B.; Cordiner, Martin A.; Kalenskii, Sergei; McCarthy, Michael C.; Herbst, Eric; Remijan, Anthony J.; McGuire, Brett A. (2020). "Detection of Interstellar HC4NC and an Investigation of Isocyanopolyyne Chemistry under TMC-1 Conditions". The Astrophysical Journal. 900 (1): L9. arXiv:2008.12345. Bibcode:2020ApJ...900L...9X. doi:10.3847/2041-8213/aba631. S2CID 221370815.
  157. McGuire, Brett A; Burkhardt, Andrew M; Shingledecker, Christopher N; Kalenskii, Sergei V; Herbst, Eric; Remijan, Anthony J; McCarthy, Michael C (2017). "Detection of Interstellar HC5O in TMC-1 with the Green Bank Telescope". The Astrophysical Journal. 843 (2): L28. arXiv:1706.09766. Bibcode:2017ApJ...843L..28M. doi:10.3847/2041-8213/aa7ca3. S2CID 119189492.
  158. Halfen, D. T.; et al. (2015), "Interstellar Detection of Methyl Isocyanate CH3NCO in Sgr B2(N): A Link from Molecular Clouds to Comets", Astrophysical Journal, 812 (1): L5, arXiv:1509.09305, Bibcode:2015ApJ...812L...5H, doi:10.1088/2041-8205/812/1/L5, S2CID 119191839
  159. Zeng, S.; Quénard, D.; Jiménez-Serra, I.; Martín-Pintado, J.; Rivilla, V. M.; Testi, L.; Martín-Doménech, R. (2019). "First detection of the pre-biotic molecule glycolonitrile (HOCH2CN) in the interstellar medium". Monthly Notices of the Royal Astronomical Society: Letters. 484 (1): L43–L48. arXiv:1901.02576. Bibcode:2019MNRAS.484L..43Z. doi:10.1093/mnrasl/slz002. S2CID 119382820.
  160. Mehringer, David M.; et al. (1997), "Detection and Confirmation of Interstellar Acetic Acid", Astrophysical Journal Letters, 480 (1): L71, Bibcode:1997ApJ...480L..71M, doi:10.1086/310612
  161. Lovas, F. J.; et al. (2006), "Hyperfine Structure Identification of Interstellar Cyanoallene toward TMC-1", Astrophysical Journal Letters, 637 (1): L37–L40, Bibcode:2006ApJ...637L..37L, doi:10.1086/500431
  162. McGuire, Brett A.; Burkhardt, Andrew M.; Loomis, Ryan A.; Shingledecker, Christopher N.; Kelvin Lee, Kin Long; Charnley, Steven B.; Cordiner, Martin A.; Herbst, Eric; Kalenskii, Sergei; Momjian, Emmanuel; Willis, Eric R.; Xue, Ci; Remijan, Anthony J.; McCarthy, Michael C. (2020). "Early Science from GOTHAM: Project Overview, Methods, and the Detection of Interstellar Propargyl Cyanide (HCCCH2CN) in TMC-1". The Astrophysical Journal. 900 (1): L10. arXiv:2008.12349. Bibcode:2020ApJ...900L..10M. doi:10.3847/2041-8213/aba632. S2CID 221370721.
  163. Hollis, J. M.; Lovas, F. J.; Jewell, P. R. (10 September 2000). "Interstellar Glycolaldehyde: The First Sugar". The Astrophysical Journal. 540 (2): L107–L110. Bibcode:2000ApJ...540L.107H. doi:10.1086/312881.
  164. Sincell, Mark (June 27, 2000), "The Sweet Signal of Sugar in Space", Science, American Association for the Advancement of Science, retrieved 2016-01-14
  165. Rivilla, Víctor M.; Colzi, Laura; Jiménez-Serra, Izaskun; Martín-Pintado, Jesús; Megías, Andrés; Melosso, Mattia; Bizzocchi, Luca; López-Gallifa, Álvaro; Martínez-Henares, Antonio; Massalkhi, Sarah; Tercero, Belén; de Vicente, Pablo; Guillemin, Jean-Claude; García de la Concepción, Juan; Rico-Villas, Fernando; Zeng, Shaoshan; Martín, Sergio; Requena-Torres, Miguel A.; Tonolo, Francesca; Alessandrini, Silvia; Dore, Luca; Barone, Vincenzo; Puzzarini, Cristina (1 April 2022). "Precursors of the RNA World in Space: Detection of (Z)-1,2-ethenediol in the Interstellar Medium, a Key Intermediate in Sugar Formation". Astrophysical Journal Letters. 929 (1): L11. arXiv:2203.14728. Bibcode:2022ApJ...929L..11R. doi:10.3847/2041-8213/ac6186.
  166. Loomis, R. A.; et al. (2013), "The Detection of Interstellar Ethanimine CH3CHNH) from Observations Taken during the GBT PRIMOS Survey", Astrophysical Journal Letters, 765 (1): L9, arXiv:1302.1121, Bibcode:2013ApJ...765L...9L, doi:10.1088/2041-8205/765/1/L9, S2CID 118522676
  167. Zeng, Shaoshan; Jiménez-Serra, Izaskun; Rivilla, Víctor M.; Martín-Pintado, Jesús; Rodríguez-Almeida, Lucas F.; Tercero, Belén; de Vicente, Pablo; Rico-Villas, Fernando; Colzi, Laura; Martín, Sergio; Requena-Torres, Miguel A. (1 October 2021). "Probing the Chemical Complexity of Amines in the ISM: Detection of Vinylamine (C2H3NH2) and Tentative Detection of Ethylamine (C2H5NH2)". The Astrophysical Journal Letters. 920 (2): L27. arXiv:2110.01791. Bibcode:2021ApJ...920L..27Z. doi:10.3847/2041-8213/ac2c7e. S2CID 238354093.
  168. Guelin, M.; et al. (1997), "Detection of a new linear carbon chain radical: C7H", Astronomy and Astrophysics, 317: L37–L40, Bibcode:1997A&A...317L...1G
  169. Belloche, A.; et al. (2008), "Detection of amino acetonitrile in Sgr B2(N)", Astronomy & Astrophysics, 482 (1): 179–196, arXiv:0801.3219, Bibcode:2008A&A...482..179B, doi:10.1051/0004-6361:20079203, S2CID 21809828
  170. Remijan, Anthony J.; et al. (2014), "Observational Results of a Multi-telescope Campaign in Search of Interstellar Urea [(NH2)2CO]", Astrophysical Journal, 783 (2): 77, arXiv:1401.4483, Bibcode:2014ApJ...783...77R, doi:10.1088/0004-637X/783/2/77, S2CID 13902461
  171. Remijan, Anthony J.; et al. (2006), "Methyltriacetylene (CH3C6H) toward TMC-1: The Largest Detected Symmetric Top", Astrophysical Journal, 643 (1): L37–L40, Bibcode:2006ApJ...643L..37R, doi:10.1086/504918
  172. Snyder, L. E.; et al. (1974), "Radio Detection of Interstellar Dimethyl Ether", Astrophysical Journal, 191: L79–L82, Bibcode:1974ApJ...191L..79S, doi:10.1086/181554
  173. Zuckerman, B.; et al. (1975), "Detection of interstellar trans-ethyl alcohol", Astrophysical Journal, 196 (2): L99–L102, Bibcode:1975ApJ...196L..99Z, doi:10.1086/181753
  174. Cernicharo, J.; Guelin, M. (1996), "Discovery of the C8H radical", Astronomy and Astrophysics, 309: L26–L30, Bibcode:1996A&A...309L..27C
  175. Brünken, S.; et al. (2007), "Detection of the Carbon Chain Negative Ion C8H in TMC-1", Astrophysical Journal, 664 (1): L43–L46, Bibcode:2007ApJ...664L..43B, doi:10.1086/520703
  176. Remijan, Anthony J.; et al. (2007), "Detection of C8H and Comparison with C8H toward IRC +10 216" (PDF), Astrophysical Journal, 664 (1): L47–L50, Bibcode:2007ApJ...664L..47R, doi:10.1086/520704, S2CID 117935231
  177. Bell, M. B.; et al. (1997), "Detection of HC11N in the Cold Dust Cloud TMC-1", Astrophysical Journal Letters, 483 (1): L61–L64, arXiv:astro-ph/9704233, Bibcode:1997ApJ...483L..61B, doi:10.1086/310732, S2CID 119459042
  178. Kroto, H. W.; et al. (1978), "The detection of cyanohexatriyne, H (C≡ C)3CN, in Heiles's cloud 2", The Astrophysical Journal, 219: L133–L137, Bibcode:1978ApJ...219L.133K, doi:10.1086/182623
  179. Marcelino, N.; et al. (2007), "Discovery of Interstellar Propylene (CH2CHCH3): Missing Links in Interstellar Gas-Phase Chemistry", Astrophysical Journal, 665 (2): L127–L130, arXiv:0707.1308, Bibcode:2007ApJ...665L.127M, doi:10.1086/521398, S2CID 15832967
  180. Kolesniková, L.; et al. (2014), "Spectroscopic Characterization and Detection of Ethyl Mercaptan in Orion", Astrophysical Journal Letters, 784 (1): L7, arXiv:1401.7810, Bibcode:2014ApJ...784L...7K, doi:10.1088/2041-8205/784/1/L7, S2CID 119115343
  181. Snyder, Lewis E.; et al. (2002), "Confirmation of Interstellar Acetone", The Astrophysical Journal, 578 (1): 245–255, Bibcode:2002ApJ...578..245S, doi:10.1086/342273
  182. Hollis, J. M.; et al. (2002), "Interstellar Antifreeze: Ethylene Glycol", Astrophysical Journal, 571 (1): L59–L62, Bibcode:2002ApJ...571L..59H, doi:10.1086/341148
  183. Hollis, J. M. (2005), "Complex Molecules and the GBT: Is Isomerism the Key?" (PDF), Complex Molecules and the GBT: Is Isomerism the Key?, Proceedings of the IAU Symposium 231, Astrochemistry throughout the Universe, Asilomar, CA, pp. 119–127
  184. McGuire, Brett A; Shingledecker, Christopher N; Willis, Eric R; Burkhardt, Andrew M; El-Abd, Samer; Motiyenko, Roman A; Brogan, Crystal L; Hunter, Todd R; Margulès, Laurent; Guillemin, Jean-Claude; Garrod, Robin T; Herbst, Eric; Remijan, Anthony J (2017). "ALMA Detection of Interstellar Methoxymethanol (CH3OCH2OH)". The Astrophysical Journal. 851 (2): L46. arXiv:1712.03256. Bibcode:2017ApJ...851L..46M. doi:10.3847/2041-8213/aaa0c3. S2CID 119211919.
  185. McGuire, B. A.; Carroll, P. B.; Loomis, R. A.; Finneran, I. A.; Jewell, P. R.; Remijan, A. J.; Blake, G. A. (2016). "Discovery of the interstellar chiral molecule propylene oxide (CH3CHCH2O)". Science. 352 (6292): 1449–52. arXiv:1606.07483. Bibcode:2016Sci...352.1449M. doi:10.1126/science.aae0328. PMID 27303055. S2CID 23838503.
  186. Rivilla, Víctor M.; Jiménez-Serra, Izaskun; Martín-Pintado, Jesús; Briones, Carlos; Rodríguez-Almeida, Lucas F.; Rico-Villas, Fernando; Tercero, Belén; Zeng, Shaoshan; Colzi, Laura; Vicente, Pablo de; Martín, Sergio (2021-06-01). "Discovery in space of ethanolamine, the simplest phospholipid head group". Proceedings of the National Academy of Sciences. 118 (22). arXiv:2105.11141. Bibcode:2021PNAS..11801314R. doi:10.1073/pnas.2101314118. ISSN 0027-8424. PMC 8179234. PMID 34031247.
  187. Belloche, A.; et al. (May 2009), "Increased complexity in interstellar chemistry: Detection and chemical modeling of ethyl formate and n-propyl cyanide in Sgr B2(N)", Astronomy and Astrophysics, 499 (1): 215–232, arXiv:0902.4694, Bibcode:2009A&A...499..215B, doi:10.1051/0004-6361/200811550, S2CID 98625608
  188. Tercero, B.; et al. (2013), "Discovery of Methyl Acetate and Gauche Ethyl Formate in Orion", Astrophysical Journal Letters, 770 (1): L13, arXiv:1305.1135, Bibcode:2013ApJ...770L..13T, doi:10.1088/2041-8205/770/1/L13, S2CID 119251272
  189. Eyre, Michael (26 September 2014). "Complex organic molecule found in interstellar space". BBC News. Retrieved 2014-09-26.
  190. Belloche, Arnaud; Garrod, Robin T.; Müller, Holger S. P.; Menten, Karl M. (26 September 2014). "Detection of a branched alkyl molecule in the interstellar medium: iso-propyl cyanide". Science. 345 (6204): 1584–1587. arXiv:1410.2607. Bibcode:2014Sci...345.1584B. doi:10.1126/science.1256678. PMID 25258074. S2CID 14573206.
  191. McGuire, Brett A.; Burkhardt, Andrew M.; Kalenskii, Sergei; Shingledecker, Christopher N.; Remijan, Anthony J.; Herbst, Eric; McCarthy, Michael C. (12 January 2018). "Detection of the aromatic molecule benzonitrile (c-C6H5CN) in the interstellar medium". Science. 359 (6372): 202–205. arXiv:1801.04228. Bibcode:2018Sci...359..202M. doi:10.1126/science.aao4890. PMID 29326270. S2CID 206663501.
  192. Cami, Jan; et al. (July 22, 2010), "Detection of C60 and C70 in a Young Planetary Nebula", Science, 329 (5996): 1180–2, Bibcode:2010Sci...329.1180C, doi:10.1126/science.1192035, PMID 20651118, S2CID 33588270
  193. Foing, B. H.; Ehrenfreund, P. (1994), "Detection of two interstellar absorption bands coincident with spectral features of C60+", Nature, 369 (6478): 296–298, Bibcode:1994Natur.369..296F, doi:10.1038/369296a0, S2CID 4354516.
  194. Campbell, Ewen K.; Holz, Mathias; Gerlich, Dieter; Maier, John P. (2015), "Laboratory confirmation of C60+ as the carrier of two diffuse interstellar bands", Nature, 523 (7560): 322–323, Bibcode:2015Natur.523..322C, doi:10.1038/nature14566, PMID 26178962, S2CID 205244293
  195. Berné, Olivier; Mulas, Giacomo; Joblin, Christine (2013), "Interstellar C60+", Astronomy & Astrophysics, 550: L4, arXiv:1211.7252, Bibcode:2013A&A...550L...4B, doi:10.1051/0004-6361/201220730, S2CID 118684608
  196. Lacour, S.; et al. (2005), "Deuterated molecular hydrogen in the Galactic ISM. New observations along seven translucent sightlines", Astronomy and Astrophysics, 430 (3): 967–977, arXiv:astro-ph/0410033, Bibcode:2005A&A...430..967L, doi:10.1051/0004-6361:20041589, S2CID 15081425
  197. Ceccarelli, Cecilia (2002), "Millimeter and infrared observations of deuterated molecules", Planetary and Space Science, 50 (12–13): 1267–1273, Bibcode:2002P&SS...50.1267C, doi:10.1016/S0032-0633(02)00093-4
  198. Green, Sheldon (1989), "Collisional excitation of interstellar molecules - Deuterated water, HDO", Astrophysical Journal Supplement Series, 70: 813–831, Bibcode:1989ApJS...70..813G, doi:10.1086/191358
  199. Butner, H. M.; et al. (2007), "Discovery of interstellar heavy water", Astrophysical Journal, 659 (2): L137–L140, Bibcode:2007ApJ...659L.137B, doi:10.1086/517883, hdl:10261/2640, S2CID 43076462
  200. Turner, B. E.; Zuckerman, B. (1978), "Observations of strongly deuterated molecules - Implications for interstellar chemistry", Astrophysical Journal Letters, 225: L75–L79, Bibcode:1978ApJ...225L..75T, doi:10.1086/182797
  201. Melosso, M.; Bizzocchi, L.; Sipilä, O.; Giuliano, B. M.; Dore, L.; Tamassia, F.; Martin-Drumel, M.-A.; Pirali, O.; Redaelli, E.; Caselli, P. (2020). "First detection of NHD and ND2 in the interstellar medium". Astronomy & Astrophysics. 641: A153. arXiv:2007.07504. Bibcode:2020A&A...641A.153M. doi:10.1051/0004-6361/202038490. S2CID 220525367.
  202. Lis, D. C.; et al. (2002), "Detection of Triply Deuterated Ammonia in the Barnard 1 Cloud", Astrophysical Journal, 571 (1): L55–L58, Bibcode:2002ApJ...571L..55L, doi:10.1086/341132.
  203. Hatchell, J. (2003), "High NH2D/NH3 ratios in protostellar cores", Astronomy and Astrophysics, 403 (2): L25–L28, arXiv:astro-ph/0302564, Bibcode:2003A&A...403L..25H, doi:10.1051/0004-6361:20030297, S2CID 118846422.
  204. Turner, B. E. (1990), "Detection of doubly deuterated interstellar formaldehyde (D2CO) - an indicator of active grain surface chemistry", Astrophysical Journal Letters, 362: L29–L33, Bibcode:1990ApJ...362L..29T, doi:10.1086/185840.
  205. Coutens, A.; et al. (9 May 2016). "The ALMA-PILS survey: First detections of deuterated formamide and deuterated isocyanic acid in the interstellar medium". Astronomy & Astrophysics. 590: L6. arXiv:1605.02562. Bibcode:2016A&A...590L...6C. doi:10.1051/0004-6361/201628612. S2CID 32878172.
  206. Cernicharo, J.; et al. (2013), "Detection of the Ammonium ion in space", Astrophysical Journal Letters, 771 (1): L10, arXiv:1306.3364, Bibcode:2013ApJ...771L..10C, doi:10.1088/2041-8205/771/1/L10, S2CID 118461954
  207. Doménech, J. L.; et al. (2013), "Improved Determination of the 10-00 Rotational Frequency of NH3D+ from the High-Resolution Spectrum of the ν4 Infrared Band", Astrophysical Journal Letters, 771 (1): L11, arXiv:1306.3792, Bibcode:2013ApJ...771L..11D, doi:10.1088/2041-8205/771/1/L10, S2CID 118461954
  208. Gerin, M.; et al. (1992), "Interstellar detection of deuterated methyl acetylene", Astronomy and Astrophysics, 253 (2): L29–L32, Bibcode:1992A&A...253L..29G.
  209. Markwick, A. J.; Charnley, S. B.; Butner, H. M.; Millar, T. J. (2005), "Interstellar CH3CCD", The Astrophysical Journal, 627 (2): L117–L120, Bibcode:2005ApJ...627L.117M, doi:10.1086/432415, S2CID 119812200.
  210. Agúndez, M.; et al. (2008-06-04), "Tentative detection of phosphine in IRC +10216", Astronomy & Astrophysics, 485 (3): L33, arXiv:0805.4297, Bibcode:2008A&A...485L..33A, doi:10.1051/0004-6361:200810193, S2CID 16668630
  211. Gupta, H.; et al. (2013), "Laboratory Measurements and Tentative Astronomical Identification of H2NCO+" (PDF), Astrophysical Journal Letters, 778 (1): L1, Bibcode:2013ApJ...778L...1G, doi:10.1088/2041-8205/778/1/L1
  212. Snyder, L. E.; et al. (2005), "A Rigorous Attempt to Verify Interstellar Glycine", Astrophysical Journal, 619 (2): 914–930, arXiv:astro-ph/0410335, Bibcode:2005ApJ...619..914S, doi:10.1086/426677, S2CID 16286204.
  213. Kuan, Y. J.; et al. (2003), "Interstellar Glycine", Astrophysical Journal, 593 (2): 848–867, Bibcode:2003ApJ...593..848K, doi:10.1086/375637.
  214. Widicus Weaver, S. L.; Blake, G. A. (2005), "1,3-Dihydroxyacetone in Sagittarius B2(N-LMH): The First Interstellar Ketose", Astrophysical Journal Letters, 624 (1): L33–L36, Bibcode:2005ApJ...624L..33W, doi:10.1086/430407
  215. Apponi, A. J.; Halfen, D. T.; Ziurys, L. M.; Hollis, J. M.; Remijan, Anthony J.; Lovas, F. J. (2006). "Investigating the Limits of Chemical Complexity in Sagittarius B2(N): A Rigorous Attempt to Confirm 1,3-Dihydroxyacetone". The Astrophysical Journal. 643 (1): L29–L32. Bibcode:2006ApJ...643L..29A. doi:10.1086/504979.
  216. Fuchs, G. W.; et al. (2005), "Trans-Ethyl Methyl Ether in Space: A new Look at a Complex Molecule in Selected Hot Core Regions", Astronomy & Astrophysics, 444 (2): 521–530, arXiv:astro-ph/0508395, Bibcode:2005A&A...444..521F, doi:10.1051/0004-6361:20053599, S2CID 14314388
  217. Iglesias-Groth, S.; et al. (2008-09-20), "Evidence for the Naphthalene Cation in a Region of the Interstellar Medium with Anomalous Microwave Emission", The Astrophysical Journal Letters, 685 (1): L55–L58, arXiv:0809.0778, Bibcode:2008ApJ...685L..55I, doi:10.1086/592349, S2CID 17190892 - This spectral assignment has not been independently confirmed, and is described by the authors as "tentative" (page L58).
  218. García-Hernández, D. A.; et al. (2011), "The Formation of Fullerenes: Clues from New C60, C70, and (Possible) Planar C24 Detections in Magellanic Cloud Planetary Nebulae", Astrophysical Journal Letters, 737 (2): L30, arXiv:1107.2595, Bibcode:2011ApJ...737L..30G, doi:10.1088/2041-8205/737/2/L30, S2CID 118504416.
  219. Battersby, S. (2004). "Space molecules point to organic origins". New Scientist. Retrieved 11 December 2009.
  220. Iglesias-Groth, S.; et al. (May 2010), "A search for interstellar anthracene toward the Perseus anomalous microwave emission region", Monthly Notices of the Royal Astronomical Society, 407 (4): 2157–2165, arXiv:1005.4388, Bibcode:2010MNRAS.407.2157I, doi:10.1111/j.1365-2966.2010.17075.x, S2CID 56343980


  1. On Earth, the dominant isotope of argon is 40Ar, so ArH+ would have a mass of 41 amu. However, the interstellar detection was of the 36ArH+ isotopologue, which has a mass of 37 amu.

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.