0

Given three normalized vectors $$ \mathbf{u}=(\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3) $$ $$ \mathbf{v}=(\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3) $$ $$ \mathbf{w}=(\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3) $$ $$ ||\mathbf{u}||=||\mathbf{v}||=||\mathbf{w}||=1 $$ What does

$$ \det\begin{vmatrix} \mathbf{u}_1 & \mathbf{u}_2& \mathbf{u}_3 \\ \mathbf{v}_1& \mathbf{v}_2& \mathbf{v}_3\\ \mathbf{w}_1& \mathbf{w}_2& \mathbf{w}_3 \end{vmatrix}=0 $$ mean (geometrical interpretation) ?

I also find out that $$ \det\begin{vmatrix} \mathbf{u}_1 & \mathbf{u}_2& \mathbf{u}_3 \\ \mathbf{v}_1& \mathbf{v}_2& \mathbf{v}_3\\ \mathbf{w}_1& \mathbf{w}_2& \mathbf{w}_3 \end{vmatrix}= \det\begin{vmatrix} \mathbf{u}_2 & \mathbf{u}_3& \mathbf{u}_1 \\ \mathbf{w}_2& \mathbf{w}_3& \mathbf{w}_1\\ \mathbf{v}_2& \mathbf{v}_3& \mathbf{v}_1\\ \end{vmatrix} $$ what's the geometrical implication of this equation?

Bernard
  • 1
  • 9
  • 62
  • 162
whitegreen
  • 1,381
  • 1
  • 11
  • 21

3 Answers3

1

$\det\begin{bmatrix} \mathbf{u}_1 & \mathbf{u}_2& \mathbf{u}_3 \\ \mathbf{v}_1& \mathbf{v}_2& \mathbf{v}_3\\ \mathbf{w}_1& \mathbf{w}_2& \mathbf{w}_3 \end{bmatrix}=0 \iff \mathbf{u},\mathbf{v}, \mathbf{u}$ are linearly dependent.

Bernard
  • 1
  • 9
  • 62
  • 162
Fred
  • 75,110
  • 2
  • 33
  • 68
1

I think 3Blue1Brown's video about the determinant will be useful for you: https://youtu.be/Ip3X9LOh2dk

Botond
  • 11,623
  • 3
  • 16
  • 42
1

Geometrically, it means the parallelepiped whose sides are $u,v,w$ has zero volume. This, in turn, means the parallelepiped is "flat", or contained in a single plane.

For more details and equivalent statements, see these popular questions with their many answers:

What's an intuitive way to think about the determinant?
What does it mean to have a determinant equal to zero?

Chris Culter
  • 26,935
  • 4
  • 46
  • 102