*Bernoulli Numbers and Zeta Functions*, by Tsuneo Arakawa, Tomoyoshi Ibukiyama, Masanobu Kaneko, and Don B. Zagier, Springer (June 30, 2014), 274 pp.

*The Riemann Hypothesis and the Distribution of Prime Numbers*, by Naji Arwashan, Nova Science Pub Inc (April 15, 2021), 219 pp.

*The Riemann Hypothesis - A Twenty-three centuries-long journey in search of the secret of prime numbers, Vol. 1*, by Jose Luis Perez Baeza, Parerga Foundation (Calle Major de Sarrià 232 PB, Barcelona 08017 ES), January 1, 2020, ISBN 978-8409257478, 493 pp.

*Ramanujan Lecture Notes Series, Vol. 2: The Riemann zeta function and related themes* (Proceedings of the international conference held at the National Institute of Advanced Studies, Bangalore, December 2003), R. Balasubramanian, K. Srinivas (Eds.), 206 pp.

*The Riemann Hypothesis: A Resource for the Afficionado and Virtuoso Alike*, Peter Borwein, Stephen Choi, Brendan Rooney, Andrea Weirathmueller (Eds.), Springer, 2008

*Equivalents of the Riemann Hypothesis*, by Kevin Broughan, 2 volumes [Vol. 1: *Arithmetic Equivalents*, 400 pages; Vol. 2: *Analytic Equivalents*, 350 pages], Cambridge University Press (January 31, 2018)

*Lectures on the Riemann zeta-function*, by K. Chandrasekharan, Tata Institute of Fundamental Research, 1953, 148 pp.

*The Riemann Hypothesis and Hilbert's Tenth Problem*, by S. Chowla, Gordon and Breach, Science Publishers, Ltd., 1965

*The Bloch-Kato Conjecture for the Riemann Zeta Function*, John Coates, A. Raghuram, Anupam Saikia, R. Sujatha (Eds.), London Mathematical Society Lecture Note Series (Book 418), Cambridge University Press (April 30, 2015), 320 pp.

*Prime Obsession: Bernhard Riemann and the Greatest Unsolved Problem in Mathematics*, by John Derbyshire, Joseph Henry Press, 2003

*Reassessing Riemann's Paper: On the Number of Primes Less Than a Given Magnitude*, by Walter Dittrich, Springer (August 1, 2018), 65 pp.

*The Music of the Primes: Searching to Solve the Greatest Mystery in Mathematics*, by Marcus du Sautoy, HarperCollins, 2003

*Riemann's Zeta Function*, by Harold M. Edwards, Academic Press, 1974

Elizalde, Emilio, *Ten Physical Applications of Spectral Zeta Functions*, Lecture Notes in Physics 855, Springer, Berlin, 2012 (2nd edition), 290 pages

Elizalde, Emilio, Sergei D. Odintsov, August Romeo, A.A. Bytsenko, and S. Zerbini, *Zeta Regularization Techniques with Applications*, World Scientific Publishing Company (1994), 336 pp.

Gál, István Sándor, *Lectures on algebraic and analytic number theory; with special emphasis on the theory of the Zeta functions of number fields and function fields*, Jones Letter Service, Minneapolis, 1961, 453 pp.

Gavrilov, N. I. *Problema Rimana o raspredelenii korneidzetafunktsii*. (Russian) [The Riemann problem on the distribution of the roots of the zeta function] Izdat. L'vov. Univ., Lvov, 1970 172 pp.

*Simply Riemann (Great Lives)*, by Jeremy Gray, Simply Charly (March 20, 2020), 167 pp.

*The Mysteries of the Real Prime*, by M.J. Shai Haran, London Mathematical Society (December 6, 2001), 256 pp.

*The Riemann hypothesis in algebraic function fields over a finite constants field*, by Helmut Hasse, Dept. of Mathematics, Pennsylvania State University, 1968, 235 pp. [Verbatim reproduction of lectures given at Pennsylvania State University, Spring term, 1968]

*Quantized Number Theory, Fractal Strings and the Riemann Hypothesis: From Spectral Operators to Phase Transitions and Universality*, by Hafedh Herichi, World Scientific Pub Co Inc (July 31, 2019), 400 pp.

Ivic, A. *Lectures on mean values of the Riemann zeta function*. Tata Institute of Fundamental Research Lectures on Mathematics and Physics, 82. Published for the Tata Institute of Fundamental Research, Bombay; by Springer-Verlag, Berlin, 1991. viii+363 pp. ISBN: 3-540-54748-7

*The Riemann Zeta-Function: Theory and Applications*, by Aleksandar Ivic, John Wiley & Sons, Inc., 1985

Ivic, A. *The Theory of Hardy's Z-function*. Cambridge Tracts in Mathematics 196. Cambridge: Cambridge University Press. ISBN 978-1-107-02883-8, 264 pages, 2012

Ivic, A. *Topics in recent zeta function theory*. Publ. Math. d'Orsay, Université de Paris-Sud, Dép. de Mathématique, 1983, 272 pages

*Lectures on the Riemann Zeta Function*, by H. Iwaniec, American Mathematical Society (October 30, 2014), 119 pp.

*Contributions to the Theory of Zeta-Functions: The Modular Relation Supremacy*, by Shigeru Kanemitsu and Haruo Tsukada, World Scientific Publishing Company (June 30, 2014), 280 pp.

*The Riemann Zeta-Function*, by Anatoly A. Karatsuba and S. M. Voronin, Walter de Gruyter & Co., 1992

*Random Matrices, Frobenius Eigenvalues, and Monodromy*, by Nicholas M. Katz and Peter Sarnak, American Mathematical Society (November 24, 1998), 419 pp.

*Fractal Geometry and Number Theory: Complex Dimensions of Fractal Strings and Zeros of Zeta Functions*, by Michel L. Lapidus and Machiel van Frankenhuysen, Birkhäuser, 1999

*Fractal Geometry, Complex Dimensions and Zeta Functions: Geometry and Spectra of Fractal Strings*, by Michel L. Lapidus and Machiel van Frankenhuysen, Springer, 2006

*In Search of the Riemann Zeros: Strings, Fractal Membranes, and Noncommutative Spacetimes*, by Michel L. Lapidus, American Mathematical Society, 2008

*Fractal Zeta Functions and Fractal Drums: Higher-Dimensional Theory of Complex Dimensions*, by Michel L. Lapidus, Goran Radunović and Darko Žubrinić, Springer (February 1, 2017), 704 pp.

*Limit Theorems for the Riemann Zeta-Function*, by Antanas Laurincikas, Kluwer Academic Publishers, 1996

*The Lerch zeta-function*, by Antanas Laurincikas and Ramunas Garunkstis, Kluwer Academic Publishers, 2002

*Recent Progress on Topics of Ramanujan Sums and Cotangent Sums Associated with the Riemann Hypothesis*, by Helmut Maier, Laszlo Toth and Michael Th. Rassias, World Scientific Publishing Co Pte Ltd (March 10, 2022), 180 pp.

*Prime Numbers and the Riemann Hypothesis*, by Barry Mazur and William Stein, Cambridge University Press (October 31, 2015), 150 pp.

*Exploring the Riemann Zeta Function: 190 years from Riemann's Birth*, Hugh Montgomery, Ashkan Nikeghbali, Michael Th. Rassias (Eds.), Springer (September 9, 2017), 272 pp.

*Spectral Theory of the Riemann Zeta-Function*, by Yoichi Motohashi, Cambridge University Press, 1997

*A Study of Bernhard Riemann's 1859 Paper*, by Terrence P. Murphy, Paramount Ridge Press (September 18, 2020), 182 pp.

*In Pursuit of Zeta-3: The World's Most Mysterious Unsolved Math Problem*, by Paul J. Nahin, Princeton University Press (October 19, 2021), 344 pp.

*An Introduction to the Theory of the Riemann Zeta-Function*, by S. J. Patterson, Cambridge University Press, 1988

Ramachandra, K. *On the mean-value and omega-theorems for the Riemann zeta-function*. Tata Institute of Fundamental Research Lectures on Mathematics and Physics, 85. Published for the Tata Institute of Fundamental Research, Bombay; by Springer-Verlag, Berlin, 1995. xiv+169 pp. ISBN: 3-540-58437-4

*The Theory of the Hurwitz Zeta Function of the Second Variable*, by Vivek V. Rane, Alpha Science International Ltd (December 31, 2015), 300 pp.

*Stalking the Riemann Hypothesis: The Quest to Find the Hidden Law of Prime Numbers*, by Dan Rockmore, Random House, Inc., 2005

*The Riemann Hypothesis in Characteristic p in Historical Perspective*, by Peter Roquette, Springer (September 30, 2018), 300 pp.

*The Riemann Hypothesis: The Greatest Unsolved Problem in Mathematics*, by Karl Sabbagh, Farrar, Straus, and Giroux, 2002

*History of Zeta Functions*, by Robert Spira, 3 volumes, Quartz Press (392 Taylor Street, Ashland OR 97520-3058), 1218 pages, 1999, ISBN 0-911455-10-8

*Seminar on the Riemann Zeta Function 1965-1966*, by Robert Spira, Mimeographed typescript, University of Tennessee, Knoxville, 57 pages

*Zeta and q-Zeta Functions and Associated Series and Integrals*, by H. M. Srivastava and Junesang Choi, Elsevier Inc., 2012

*New Directions in Value-distribution Theory of Zeta and L-functions: Wurzburg Conference, October 6-10, 2008* (Berichte aus der Mathematik), Rasa Steuding, Jörn Steuding (Eds.), Shaker Verlag GmbH, Germany (December 31, 2009), 346 pp.

*Bohr-Jessen Limit Theorem, Revisited*, by Satoshi Takanobu, Mathematical Society of Japan Memoirs (Book 31), Mathematical Society of Japan (July, 2013), 216 pp.

*Zeta and eta functions: A new hypothesis*, by Ashwani Kumar Thukral, CreateSpace Independent Publishing Platform (December 17, 2015), 56 pp.

*The Theory of the Riemann Zeta-Function*, by E. C. Titchmarsh, D. R. Heath-Brown (Ed.), Second edition, Oxford University Press, 1986

*Pseudodifferential Methods in Number Theory*, by André Unterberger, Birkhäuser (July 24, 2018), 180 pages

Van der Veen, Roland; van de Craats, Jan *De Riemann-hypothese*. (Dutch) [The Riemann hypothesis] *Een miljoenenprobleem*. [A million dollar problem] Epsilon Uitgaven, Utrecht, 2011. vi+102 pp. ISBN: 978-90-5041-126-4

*The Riemann Hypothesis*, by Roland van der Veen and Jan van de Craats, The Mathematical Association of America (January 6, 2016), 154 pp.

Van Frankenhuijsen, Machiel, *The Riemann Hypothesis for Function Fields: Frobenius Flow and Shift Operators*, London Mathematical Society Student Texts (Book 80), Cambridge University Press (January 9, 2014), 162 pp.

*Zeta Functions over Zeros of Zeta Functions*, by André Voros, Springer-Verlag, 2010

*Zeta Functions of Reductive Groups and Their Zeros*, by Lin Weng, World Scientific Publishing Co Pte Ltd (May 19, 2018), 550 pp.