As metioned in Wikipedia's biography, Shanks used Machin's formula
$$ \pi = 16\arctan(\frac15) - 4\arctan(\frac1{239}) $$

The standard way to use that (and the various Machin-*like* formulas found later) is to compute the arctangents using the power series

$$ \arctan x = x - \frac{x^3}3 + \frac{x^5}5 - \frac{x^7}7 + \frac{x^9}9 - \cdots $$

Getting $\arctan(\frac15)$ to 707 digits requires about 500 terms calculated to that precision. Each requires two long divisions -- one to divide the previous numerator by 25, another to divide it by the denominator.

The series for $\arctan(\frac1{239})$ converges faster and only needs some 150 terms.

(You can know how many terms you need because the series is *alternating* (and absolutely decreasing) -- so once you reach a term that is smaller than your desired precision, you can stop).

The point of Machin-like formulas is that the series for $\arctan x$ converges faster the smaller $x$ is. We could just compute $\pi$ as $4\arctan(1)$, but the series converges *hysterically slowly* when $x$ is as large as $1$ (and not at all if it is even larger). The trick embodied by Machin's formula is to express a straight angle as a sum/difference of the corner angles of (a small number of different sizes of) long and thin right triangles with simple integer ratios between the cathetes.

The arctangent gets easier to compute the longer and thinner each triangle is, and especially if the neighboring side is an integer multiple of the opposite one, which corresponds to angles of the form $\arctan\frac{1}{\text{something}}$. Then going from one numerator in the series to the next costs only a division, rather than a division *and* a multiplication.

Machin observed that four copies of the $5$-$1$-$\sqrt{26}$ triangle makes the same angle as an $1$-$1$-$\sqrt2$ triangle (whose angle is $\pi/4$) plus one $239$-$1$-$\sqrt{239^2+1}$ triangle. These facts can be computed exactly using the techniques displayed here.

Later workers have found better variants of Machin's idea, nut if you're in prison without reference works, it's probably easiest to rediscover Machin's formula by remembering that some number of copies of $\arctan\frac1k$ for some fairly small $k$ adds up to something very close to 45°.