9

I'm trying to create "waves" of variables that represent repeated measures. Specifically, I'm trying to create consecutive variables that represent the mean values for variables 1 - 10, 11 - 20 ... 91-100. Note that the "..." symbolizes the variables for waves 3 through 9, as avoiding typing these is my goal!

Here is an example data frame, df, with 10 rows and 100 columns:

mat <- matrix(runif(1000, 1, 10), ncol = 100)
df <- data.frame(mat)
dim(df)
> 10 100

I've used the dplyr function mutate which works once all the variables are typed, but is time-intensive and prone to mistakes. I have not been able to find a way to do so without resorting to manually typing the names of the columns, as I started doing below (note that "..." symbolizes waves 3 through 9):

df <- df %>% 
      mutate(wave_1 = (X1 + X2 + X3 + X4 + X5 + X6 + X7 + X8 + X9 + X10) / 10,
             wave_2 = (X11 + X12 + X13 + X14 + X15 + X16 + X17 + X18 + X19 + X20) / 10,
             ...
             wave_10 = (X91 + X92 + X93 + X94 + X95 + X96 + X97 + X98 + X99 + X100) / 10)

Can you mutate mutate multiple / consecutive columns with 'dplyr'? Other approaches are also welcome.

Joshua Rosenberg
  • 3,364
  • 4
  • 26
  • 61

3 Answers3

7

Here is one way with the package zoo:

library(zoo)
t(rollapply(t(df), width = 10, by = 10, function(x) sum(x)/10))

Here is one way to do it with base R:

splits <- 1:100
dim(splits) <- c(10, 10)
splits <- split(splits, col(splits))
results <- do.call("cbind", lapply(splits, function(x) data.frame(rowSums(df[,x] / 10))))
names(results) <- paste0("wave_", 1:10)
results

Another very succinct way with base R (courtesy of G.Grothendieck):

t(apply(df, 1, tapply, gl(10, 10), mean))

And here is a solution with dplyr and tidyr:

library(dplyr)
library(tidyr)
df$row <- 1:nrow(df)
df2 <- df %>% gather(column, value, -row)
df2$column <- cut(as.numeric(gsub("X", "", df2$column)),breaks = c(0:10*10))
df2 <- df2 %>% group_by(row, column) %>% summarise(value = sum(value)/10)
df2 %>% spread(column, value) %>% select(-row)
Carlos Cinelli
  • 10,357
  • 8
  • 37
  • 62
2

Another dplyr solution which is a bit closer to syntax indicated by the OP and doesn't require recasting the data-frame.

The 4 wave calculations do basically the same thing in slightly different but vectorized (i.e. rowSums and rowMeans) ways:

df <- df %>% 
      mutate(wave_1 = rowSums(select(., num_range("X", 1:10)))/10,
             wave_2 = rowSums(select(., c(11:20)))/10,
             wave_3 = rowMeans(select(., X21:X30)),
             wave_4 = rowMeans(.[, 31:40]))

Edit: . can be used as placeholder for the current dataframe df (code was changed accordingly). Also wave_4 added to demonstrate it can be used like a dataframe.

In case to operating function is not vectorized (that is, it can't be used on the whole dataframe such as rowSums), it is also possible to make use of the rowwise and do function using a non-vectorized functions (e.g. myfun)

myfun <- function (x) {
  sum(x)/10
}

tmp=df %>%
  rowwise() %>%
  do(data.frame(., wave_1 = myfun(unlist(.)[1:10]))) %>%
  do(data.frame(., wave_2 = myfun(unlist(.)[11:20])))

Note: . changes seems to change it's meaning, referring to the whole dataframe for mutate but only the current row for do.

  • To clarify on the latter code block: By calling `do`, you're operating on groups of the original data frame, so `.` in that situation refers to each group. `rowwise` is a shortcut for `group_by` in which every row is a separate group, hence why after `rowwise`, `.` refers to each row – camille Oct 03 '18 at 13:41
0

Another approach (and IMO the recommended approach) using dplyr would be to first reshape or melt your data into a tidy data format before summarizing the values from each wave.

In detail, this process would involve:

  1. Reshape your data to long format (tidyr::gather)
  2. Identify which variables belong to each "wave"
  3. Summarize values for each wave
  4. Reshape your data back to wide format (tidyr::spread)

In your example, this would look like the following:

library(tidyverse)

mat <- matrix(runif(1000, 1, 10), ncol = 100)
df <- data.frame(mat)
dim(df)

df %>%
  dplyr::mutate(id = dplyr::row_number()) %>%
  # reshape to "tidy data" or long format
  tidyr::gather(varname, value, -id) %>%
  # identify which variables belong to which "wave"
  dplyr::mutate(varnum = as.integer(stringr::str_extract(varname, pattern = '\\d+')),
                wave = floor((varnum-1)/10)+1) %>%
  # summarize your value for each wave
  dplyr::group_by(id, wave) %>%
  dplyr::summarise(avg = sum(value)/n()) %>%
  # reshape back to "wide" format
  tidyr::spread(wave, avg, sep='_') %>%
  dplyr::ungroup()

With the following output:

# A tibble: 10 x 11
      id wave_1 wave_2 wave_3 wave_4 wave_5 wave_6 wave_7 wave_8 wave_9 wave_10
   <int>  <dbl>  <dbl>  <dbl>  <dbl>  <dbl>  <dbl>  <dbl>  <dbl>  <dbl>   <dbl>
 1     1   6.24   4.49   5.85   5.43   5.98   6.04   4.83   6.92   5.43    5.52
 2     2   5.16   6.82   5.76   6.66   6.21   5.41   4.58   5.06   5.81    6.93
 3     3   7.23   6.28   5.40   5.70   5.13   6.27   5.55   5.84   6.74    5.94
 4     4   5.27   4.79   4.39   6.85   5.31   6.01   6.15   3.31   5.73    5.63
 5     5   6.48   5.16   5.20   4.71   5.87   4.44   6.40   5.00   5.90    3.78
 6     6   4.18   4.64   5.49   5.47   5.75   6.35   4.34   5.66   5.34    6.57
 7     7   4.97   4.09   6.17   5.78   5.87   6.47   4.96   4.39   5.99    5.35
 8     8   5.50   7.21   5.43   5.15   4.56   5.00   4.86   5.72   6.41    5.65
 9     9   5.27   5.71   5.23   5.44   5.12   5.40   5.38   6.05   5.41    5.30
10    10   5.95   4.58   6.52   5.46   7.63   5.56   5.82   7.03   5.68    5.38

This could be joined back to your original data to match the example you gave (which used mutate) as follows:

df %>%
  dplyr::mutate(id = dplyr::row_number()) %>%
  tidyr::gather(varname, value, -id) %>%
  dplyr::mutate(varnum = as.integer(stringr::str_extract(varname, pattern = '\\d+')),
                wave = floor((varnum-1)/10)+1) %>%
  dplyr::group_by(id, wave) %>%
  dplyr::summarise(avg = sum(value)/n()) %>%
  tidyr::spread(wave, avg, sep='_') %>%
  dplyr::ungroup() %>%
  dplyr::right_join(df %>%    # <-- join back to original data
                     dplyr::mutate(id = dplyr::row_number()),
                   by = 'id')

One nice aspect to this approach is that you can inspect your data to confirm that you are correctly assigning variables to "wave"s.

df %>%
  dplyr::mutate(id = dplyr::row_number()) %>%
  tidyr::gather(varname, value, -id) %>%
  dplyr::mutate(varnum = as.integer(stringr::str_extract(varname, pattern = '\\d+')),
                wave = floor((varnum-1)/10)+1) %>%
  dplyr::distinct(varname, varnum, wave) %>%
  head()

which produces:

  varname varnum wave
1      X1      1    1
2      X2      2    1
3      X3      3    1
4      X4      4    1
5      X5      5    1
6      X6      6    1
jackinovik
  • 584
  • 1
  • 5
  • 5