Diesel particulate filter

A diesel particulate filter (DPF) is a device designed to remove diesel particulate matter or soot from the exhaust gas of a diesel engine.[1][2]

A diesel particulate filter (top left) in a Peugeot
Off-road - DPF installation

Mode of action

Wall-flow diesel particulate filters usually remove 85% or more of the soot, and under certain conditions can attain soot removal efficiencies approaching 100%. Some filters are single-use, intended for disposal and replacement once full of accumulated ash. Others are designed to burn off the accumulated particulate either passively through the use of a catalyst or by active means such as a fuel burner which heats the filter to soot combustion temperatures. This is accomplished by engine programming to run (when the filter is full) in a manner that elevates exhaust temperature, in conjunction with an extra fuel injector in the exhaust stream that injects fuel to react with a catalyst element to burn off accumulated soot in the DPF filter,[3] or through other methods. This is known as filter regeneration. Cleaning is also required as part of periodic maintenance, and it must be done carefully to avoid damaging the filter. Failure of fuel injectors or turbochargers resulting in contamination of the filter with raw diesel or engine oil can also necessitate cleaning.[4] The regeneration process occurs at road speeds higher than can generally be attained on city streets; vehicles driven exclusively at low speeds in urban traffic can require periodic trips at higher speeds to clean out the DPF.[5] If the driver ignores the warning light and waits too long to operate the vehicle above 60 km/h (40 mph), the DPF may not regenerate properly, and continued operation past that point may spoil the DPF completely so it must be replaced.[6] Some newer diesel engines, namely those installed in combination vehicles, can also perform what is called a Parked Regeneration, where the engine increases RPM to around 1400 while parked, to increase the temperature of the exhaust.

Diesel engines produce a variety of particles during combustion of the fuel/air mix due to incomplete combustion. The composition of the particles varies widely dependent upon engine type, age, and the emissions specification that the engine was designed to meet. Two-stroke diesel engines produce more particulate per unit of power than do four-stroke diesel engines, as they burn the fuel-air mix less completely.[7]

Diesel particulate matter resulting from the incomplete combustion of diesel fuel produces soot (black carbon) particles. These particles include tiny nanoparticles—smaller than one micrometre (one micron). Soot and other particles from diesel engines worsen the particulate matter pollution in the air and are harmful to health.[8]

New particulate filters can capture from 30% to greater than 95% of the harmful soot.[9] With an optimal diesel particulate filter (DPF), soot emissions may be decreased to 0.001 g/km or less.[10]

The quality of the fuel also influences the formation of these particles. For example, a high sulphur content diesel produces more particles. Lower sulphur fuel produces fewer particles, and allows use of particulate filters. The injection pressure of diesel also influences the formation of fine particles.


Diesel particulate filtering was first considered in the 1970s due to concerns regarding the impacts of inhaled particulates.[11] Particulate filters have been in use on non-road machines since 1980, and in automobiles since 1985.[12][13] Historically medium and heavy duty diesel engine emissions were not regulated until 1987 when the first California Heavy Truck rule was introduced capping particulate emissions at 0.60 g/BHP Hour.[14] Since then, progressively tighter standards have been introduced for light- and heavy-duty roadgoing diesel-powered vehicles and for off-road diesel engines. Similar regulations have also been adopted by the European Union and some individual European countries, most Asian countries, and the rest of North and South America.[15]

While no jurisdiction has explicitly made filters mandatory, the increasingly stringent emissions regulations that engine manufacturers must meet mean that eventually all on-road diesel engines will be fitted with them.[14] In the European Union, filters are expected to be necessary to meet the Euro.VI heavy truck engine emissions regulations currently under discussion and planned for the 2012-2013 time frame. In 2000, in anticipation of the future Euro 5 regulations PSA Peugeot Citroën became the first company to make filters standard on passenger cars.[16]

As of December 2008 the California Air Resources Board (CARB) established the 2008 California Statewide Truck and Bus Rule which—with variance according to vehicle type, size and usage—requires that on-road diesel heavy trucks and buses in California be retrofitted, repowered, or replaced to reduce particulate matter (PM) emissions by at least 85%. Retrofitting the engines with CARB-approved diesel particulate filters is one way to fulfill this requirement.[17] In 2009 the American Recovery and Reinvestment Act provided funding to assist owners in offsetting the cost of diesel retrofits for their vehicles.[18] Other jurisdictions have also launched retrofit programs, including:

Inadequately maintained particulate filters on vehicles with diesel engines are prone to soot buildup, which can cause engine problems due to high back pressure.[4]

In 2018 the UK made changes to its MOT test requirements,[26] including tougher scrutiny of diesel cars. One requirement was to have a properly fitted and working DPF. Driving without a DPF could incur a £1000 fine.[27][28]

Variants of DPFs

Cordierite Diesel Particulate Filter on GM 7.8 Isuzu

Unlike a catalytic converter which is a flow-through device, a DPF retains bigger exhaust gas particles by forcing the gas to flow through the filter;[2][29] however, the DPF does not retain small particles. Maintenance-free DPFs oxidise or burn larger particles until they are small enough to pass through the filter, though often particles "clump" together in the DPF reducing the overall particle count as well as overall mass.[30][31] There are a variety of diesel particulate filter technologies on the market. Each is designed around similar requirements:

  1. Fine filtration
  2. Minimum pressure drop
  3. Low cost
  4. Mass production suitability
  5. Product durability

Cordierite wall flow filters

The most common filter is made of cordierite (a ceramic material that is also used as catalytic converter supports (cores)). Cordierite filters provide excellent filtration efficiency, are relatively inexpensive, and have thermal properties that make packaging them for installation in the vehicle simple. The major drawback is that cordierite has a relatively low melting point (about 1200 °C) and cordierite substrates have been known to melt during filter regeneration. This is mostly an issue if the filter has become loaded more heavily than usual, and is more of an issue with passive systems than with active systems, unless there is a system breakdown.[2][32]

Cordierite filter cores look like catalytic converter cores that have had alternate channels plugged - the plugs force the exhaust gas flow through the wall and the particulate collects on the inlet face.[33]

Silicon carbide wall flow filters

The second most popular filter material is silicon carbide, or SiC. It has a higher (2700 °C) melting point than cordierite, however, it is not as stable thermally, making packaging an issue. Small SiC cores are made of single pieces, while larger cores are made in segments, which are separated by a special cement so that heat expansion of the core will be taken up by the cement, and not the package. SiC cores are usually more expensive than cordierite cores, however they are manufactured in similar sizes, and one can often be used to replace the other. Silicon carbide filter cores also look like catalytic converter cores that have had alternate channels plugged - again the plugs force the exhaust gas flow through the wall and the particulate collects on the inlet face.[2][34]

The characteristics of the wall flow diesel particulate filter substrate are:

  • broad band filtration (the diameters of the filtered particles are 0.2–150 μm)
  • high filtration efficiency (can be up to 95%)
  • high refractory
  • high mechanical properties
  • high boiling point.[34]

Ceramic fiber filters

Fibrous ceramic filters are made from several different types of ceramic fibers that are mixed together to form a porous medium. This medium can be formed into almost any shape and can be customized to suit various applications. The porosity can be controlled in order to produce high flow, lower efficiency or high efficiency lower volume filtration. Fibrous filters have an advantage over wall flow design of producing lower back pressure. Fibrous ceramic filters remove carbon particulates almost completely, including fine particulates less than 100 nanometres (nm) diameter with an efficiency of greater than 95% in mass and greater than 99% in number of particles over a wide range of engine operating conditions. Since the continuous flow of soot into the filter would eventually block it, it is necessary to 'regenerate' the filtration properties of the filter by burning off the collected particulate on a regular basis. Soot particulate burn-off forms water and CO2 in small quantities amounting to less than 0.05% of the CO2 emitted by the engine.[2]

Metal fiber flow-through filters

Some cores are made from metal fibers – generally the fibers are "woven" into a monolith. Such cores have the advantage that an electrical current can be passed through the monolith to heat the core for regeneration purposes, allowing the filter to regenerate at low exhaust temperatures and/or low exhaust flow rates. Metal fiber cores tend to be more expensive than cordierite or silicon carbide cores, and are generally not interchangeable with them because of the electrical requirement.[2][35]


Disposable paper cores are used in certain specialty applications, without a regeneration strategy. Coal mines are common users – the exhaust gas is usually first passed through a water trap to cool it, and then through the filter.[36] Paper filters are also used when a diesel machine must be used indoors for short periods of time, such as on a forklift being used to install equipment inside a store.[2][37]

Partial filters

There are a variety of devices that produce over 50% particulate matter filtration, but less than 85%. Partial filters come in a variety of materials. The only commonality between them is that they produce more back pressure than a catalytic converter, and less than a diesel particulate filter. Partial filter technology is popular for retrofit.[38]


Filters require more maintenance than catalytic converters. Ash, a byproduct of oil consumption from normal engine operation, builds up in the filter as it cannot be converted into a gas and pass through the walls of the filter.[39] This increases the pressure before the filter. Warnings are given to the driver before filter restriction causes an issue with driveability or damage to the engine or filter develop. Regular filter maintenance is a necessity.[4]

DPF filters go through a regeneration process which removes this soot and lowers the filter pressure. There are three types of regeneration: passive, active, and forced. Passive regeneration takes place normally while driving, when engine load and vehicle drive-cycle create temperatures that are high enough to regenerate the soot buildup on the DPF walls. Active regeneration happens while the vehicle is in use, when low engine load and lower exhaust gas temperatures inhibit the naturally occurring passive regeneration. Sensors upstream and downstream of the DPF (or a differential pressure sensor) provide readings that initiate a metered addition of fuel into the exhaust stream. There are two methods to inject fuel, either downstream injection directly into the exhaust stream, downstream of the turbo, or fuel injection into the engine cylinders on the exhaust stroke. This fuel and exhaust gas mixture passes through the Diesel Oxidation Catalyst (DOC) creating temperatures high enough to burn off the accumulated soot. Once the pressure drop across the DPF lowers to a calculated value, the process ends, until the soot accumulation builds up again. This works well for vehicles that drive longer distances with few stops compared to those that perform short trips with many starts and stops. If the filter develops too much pressure then the last type of regeneration must be used - a forced regeneration. This can be accomplished in two ways. The vehicle operator can initiate the regeneration via a dashboard mounted switch. Various signal interlocks, such as park brake applied, transmission in neutral, engine coolant temperature, and an absence of engine related fault codes are required (vary by OEM and application) for this process to initiate. When the soot accumulation reaches a level that is potentially damaging to the engine or the exhaust system, the solution involves a garage using a computer program to run a regeneration of the DPF manually.


In 2011, Ford recalled 37,400 F-Series trucks with diesel engines after fuel and oil leaks caused fires in the diesel particulate filters of the trucks. No injuries occurred before the recall, though one grass fire was started.[40] A similar recall was issued for 2005-2007 Jaguar S-Type and XJ diesels, where large amounts of soot became trapped in the DPF In affected vehicles, smoke and fire emanated from the vehicle underside, accompanied by flames from the rear of the exhaust. The heat from the fire could cause heating through the transmission tunnel to the interior, melting interior components and potentially causing interior fires.[41]


Metering pump for Diesel or additive injection, 3 L/h at 5 bar
Diagram of the regeneration
Hino truck and its selective catalytic reduction (SCR) next to the DPF with regeneration process by the late fuel injection to control exhaust temperature to burn off soot.[42][43]

Regeneration is the process of burning off (oxidizing) the accumulated soot from the filter. This is done either passively (from the engine's exhaust heat in normal operation or by adding a catalyst to the filter) or actively introducing very high heat into the exhaust system. On-board active filter management can use a variety of strategies:[9]

  1. Engine management to increase exhaust temperature through late fuel injection or injection during the exhaust stroke
  2. Use of a fuel-borne catalyst to reduce soot burn-out temperature
  3. A fuel burner after the turbo to increase the exhaust temperature
  4. A catalytic oxidizer to increase the exhaust temperature, with after injection (HC-Doser)
  5. Resistive heating coils to increase the exhaust temperature
  6. Microwave energy to increase the particulate temperature

All on-board active systems use extra fuel, whether through burning to heat the DPF, or providing extra power to the DPF's electrical system, although the use of a fuel borne catalyst reduces the energy required very significantly. Typically a computer monitors one or more sensors that measure back pressure and/or temperature, and based on pre-programmed set points the computer makes decisions on when to activate the regeneration cycle. The additional fuel can be supplied by a metering pump. Running the cycle too often while keeping the back pressure in the exhaust system low will result in high fuel consumption. Not running the regeneration cycle soon enough increases the risk of engine damage and/or uncontrolled regeneration (thermal runaway) and possible DPF failure.

Diesel particulate matter burns when temperatures above 600 °C are attained. This temperature can be reduced to somewhere in the range of 350 to 450 °C by use of a fuel-borne catalyst. The actual temperature of soot burn-out will depend on the chemistry employed. In the mid-2010s, scientists at 3M developed a magnesium doped version of traditional iron based catalysts which lowered the temperature required for particulate matter oxidation to just over 200 °C. The lower reaction temperature is made possible by the dopant allowing the Fe lattice to hold more oxygen.[44] This advancement is significant because it allows the cleaning reaction to take place at the standard operating temperature of most diesel engines, removing the requirement for burning extra fuel or otherwise artificially heating the engine. The family of Mg doped catalysts, named Grindstaff catalysts after the chemist who started the work, has been the subject of much investigation across industry and academia with the tightening of emissions regulations on particulate matter world wide.[45][46]

In some cases, in the absence of a fuel-borne catalyst, the combustion of the particulate matter can raise temperatures so high, that they are above the structural integrity threshold of the filter material, which can cause catastrophic failure of the substrate. Various strategies have been developed to limit this possibility. Note that unlike a spark-ignited engine, which typically has less than 0.5% oxygen in the exhaust gas stream before the emission control device(s), diesel engines have a very high ratio of oxygen available. While the amount of available oxygen makes fast regeneration of a filter possible, it also contributes to runaway regeneration problems.

Some applications use off-board regeneration. Off-board regeneration requires operator intervention (i.e. the machine is either plugged into a wall/floor mounted regeneration station, or the filter is removed from the machine and placed in the regeneration station). Off-board regeneration is not suitable for on-road vehicles, except in situations where the vehicles are parked in a central depot when not in use. Off-board regeneration is mainly used in industrial and mining applications. Coal mines (with the attendant explosion risk from coal damp) use off-board regeneration if non-disposable filters are installed, with the regeneration stations sited in an area where non-permissible machinery is allowed.

Many forklifts may also use off-board regeneration – typically mining machinery and other machinery that spend their operational lives in one location, which makes having a stationary regeneration station practical. In situations where the filter is physically removed from the machine for regeneration there is also the advantage of being able to inspect the filter core on a daily basis (DPF cores for non-road applications are typically sized to be usable for one shift - so regeneration is a daily occurrence).[47]

See also


  1. Tom Nash (May 2003) "Diesels: The Smoke is clearing", Motor Vol.199 No. 5, p. 54, Hearst Business Publishing Inc.
  2. Emission Technology: DPF - Diesel Particulate Filters, Axces.eu
  3. Jong Hun Kim et al. (November 2010) "NO2-Assisted Soot Regeneration Behavior in a Diesel Particulate Filter with Heavy-Duty Diesel Exhaust Gases", Numerical Heat Transfer Part A Vol.58 No.9 pp.725–739, Chonbuk National University, Korea doi:10.1080/10407782.2010.523293
  4. "DPF Maintenance" (January 2010) HDT Trucking Info
  5. "Diesel dilemma" (7 Nov 2011) BBC News
  6. "DPFs reduce diesel soot emissions by 80% but they're not suitable for everyone" (5 December 2013) The Automobile Association
  7. "Study: 'Clean fuel' not always successful" (March 1, 2011) UPI NewsTrack, Vancouver, British Columbia
    "Canadian researchers say a program by one of the world's largest cities [New Delhi] to switch its vehicles to clean fuel has not significantly improved emission levels."
  8. "Emissions from new diesel cars are still far higher than official limit". TheGuardian.com. 30 August 2016.
  9. Barone et al. (August 2010) "An analysis of field-aged diesel particulate filter performance: particle emissions before, during, and after regeneration", Journal of the Air & Waste Management Association Vol. 60 No.8 pp. 968-76 doi:10.3155/1047-3289.60.8.968
  10. DPF - Diesel Particulate Filters, Axces.eu
  11. Vincent D. Blondel: Recent Advances in Learning and Control, p. 233, Springer Science & Business Media, 2008, ISBN 9781848001541
  12. Diesel Particulate Regeneration
  13. ""Advanced Diesel Particulate Filters And Systems For Exhaust Cleaning", Huss LLC" (PDF). Archived from the original (PDF) on 2014-09-06. Retrieved 2014-09-05.
  14. Bahadur et al. (2011) "Impact of California’s air pollution laws on black carbon and their implications for direct radiative forcing", Archived 2014-09-06 at the Wayback Machine Atmospheric Environment Vol. 45 pp. 1162–1167, Scripps Institution of Oceanography, University of California San Diego
  15. Worldwide emission standards for diesel vehicles and engines
  16. James Scoltock (June 2014) "Diesel Particulate Filter: PSA Peugeot Citroën was the first to bring in particulate filters to help make diesels cleaner", Automotive Engineer p. 9
  17. "Frequently Asked Questions - Heavy-Duty DECS Installation and Maintenance". Retrieved 28 October 2011.
  18. American Recovery and Reinvestment Act Archived 2014-09-05 at the Wayback Machine
  19. ""Technology from BASF makes Hong Kong's air cleaner" (April 02, 2008) BASF The Chemical Company". Archived from the original on September 23, 2015. Retrieved September 5, 2014.
  20. "In Introducing Diesel Vehicle Control" (PDF). Archived from the original (PDF) on 2012-10-30. Retrieved 2014-09-05.
  21. "Cleaning Up Diesel Emissions in Mexico City" (July 12, 2012) EPA
  22. "New York City passes diesel emissions rules" (Apr 21, 2005) FleetOwner
  23. "Milan’s Ecopass To Evolve" (September 2, 2011) Italy Chronicles
  24. Low Emission Zone, Transport for london
  25. Fit a Filter, Transport for london
  26. "Pass Your 2018 MOT - New Rules Regulations
  27. "Europe Bans Diesel for Cleaner Air - Fixter Blog". Fixter Blog. 2018-07-12. Retrieved 2018-07-26.
  28. "Pass Your 2018 MOT - New Rules & Regulations - Fixter Blog". Fixter Blog. Retrieved 2018-07-26.
  29. Diesel particulate Matter – Emission Reduction Methods Archived 2012-10-17 at the Wayback Machine (2009) Mine Safety and Health Administration (MSHA), U.S. Department of Labor]
  30. Particulate emissions from diesel engines: correlation between engine technology and emissions
  31. DPF (Diesel Particulate Filters) Explained
  32. "Technical Papers" (2013) Corning Environmental Technologies
  33. "Cordierite" (2009) Diesel Emission Technologies Inc.
  34. "Silicon Carbide (SiC)" (2009) Diesel Emission Technologies Inc.
  35. "Metal Fiber & Mesh Filters" (2009) Diesel Emission Technologies
  36. "Best Practices For Underground Diesel Emissions" - CDC Stacks
  37. "Technology Guide, DieselNet". Archived from the original on 2014-08-02. Retrieved 2014-09-05.
  38. Jacobs et al. (2005) "Development of Partial Filter Technology for HDD Retrofit", SAE International
  39. Kamp CS, et al. (April 2016). "Ash Permeability Determination in the Diesel Particulate Filter from Ultra-High Resolution 3D X-Ray Imaging and Image-Based Direct Numerical Simulations". SAE International. 2017-01-0927 (2): 608–618. doi:10.4271/2017-01-0927.
  40. "Ford recalls F-150s over tailpipe fire fear" (March 21, 2007) NBC News
  41. "Jaguar S Type XJ diesel particulate filter recall" (22 Mar 2007) CarAdvice
  42. "Hino Standardized SCR Unit". Hino Motors. Archived from the original on 5 August 2014. Retrieved 30 July 2014.
  43. "The DPR Future" (PDF). Hino Motors. Retrieved 30 July 2014.
  44. Liu, Junheng; Wu, Pengcheng; Sun, Ping; Ji, Qian; Zhang, Qi; Wang, Pan (2021-04-15). "Effects of iron-based fuel borne catalyst addition on combustion, in-cylinder soot distribution and exhaust emission characteristics in a common-rail diesel engine". Fuel. 290: 120096. doi:10.1016/j.fuel.2020.120096. ISSN 0016-2361.
  45. Song, Juhun; Wang, Jinguo; Boehman, André L. (2006-07-01). "The role of fuel-borne catalyst in diesel particulate oxidation behavior". Combustion and Flame. 146 (1): 73–84. doi:10.1016/j.combustflame.2006.03.012. ISSN 0010-2180.
  46. Liu, Junheng; Wu, Pengcheng; Sun, Ping; Ji, Qian; Zhang, Qi; Wang, Pan (2021-04-15). "Effects of iron-based fuel borne catalyst addition on combustion, in-cylinder soot distribution and exhaust emission characteristics in a common-rail diesel engine". Fuel. 290: 120096. doi:10.1016/j.fuel.2020.120096. ISSN 0016-2361.
  47. Bruce R. Conrad Archived 2006-09-02 at the Wayback Machine, "Diesel Emissions Evaluation Program - INCO" Diesel Emissions Evaluation Program Website (May 2006)
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.