For questions related to the study of properties of a graph in relationship to the spectral properties of some associated matrix.

In mathematics, spectral graph theory is the study of properties of a graph in relationship to the characteristic polynomial, eigenvalues, and eigenvectors of matrices associated to the graph, such as its adjacency matrix or Laplacian matrix.

An undirected graph has a symmetric adjacency matrix and therefore has real eigenvalues (the multiset of which is called the graph's spectrum) and a complete set of orthonormal eigenvectors.

While the adjacency matrix depends on the vertex labeling, its spectrum is graph invariant.