For questions concerning sequences and series. Typical questions concern, but are not limited to: identifying sequences, identifying terms, recurrence relations, $\epsilon-N$ proofs of convergence, convergence tests, finding closed forms for sums. For questions on finite sums, use the (summation) tag instead.

Sequences and series are often considered as a main part of part of calculus, in addition to limits, continuity, differentiation and integration.

A sequence is an enumerated collection of objects in which repetitions are allowed. There are special types of sequences, such as arithmetic sequences (or arithmetic progressions), where the next term is a constant more than the previous; harmonic progressions, which is formed by taking the reciprocal of each term of an arithmetic progression; logarithmic progression, which is formed from a series whose progression getting smaller; and geometric progressions, where the next term is a constant multiplied by the previous term.

A sequence can be given by a direct formula (e.g. $a_n = 2^n + 3$), or by a recurrence relation. In a recurrence relation, the relation between the next term and the earlier terms is given. An example is the recurrence relation $F_{n+2}=F_{n+1}+F_n, n \geq 0.$ Together with the initial terms $F_0=0$ and $F_1=1$, this recurrence relation defines the famous Fibonacci sequence.

A series is formed by summing a sequence. A typical question is: When the number of summed terms goes to infinity, does the sum approach a finite limit? In other words, is it convergent? Several tests, such as the ratio test, the root test, the limit comparison test, the integral test, etc. can help to answer these questions.

**Important note.** Questions about guessing the next number in a sequence, with no explicit mathematical context, will usually be quickly closed. Consider posting these questions at Puzzling Stack Exchange instead.