Questions tagged [matrices]

For any topic related to matrices. This includes: systems of linear equations, eigenvalues and eigenvectors (diagonalization, triangularization), determinant, trace, characteristic polynomial, adjugate and adjoint, transpose, Jordan normal form, matrix algorithms (e.g. LU, Gauss elimination, SVD, QR), invariant factors, quadratic forms, etc. For questions specifically concerning matrix equations, use the (matrix-equations) tag.

A matrix is a rectangular array of elements, usually numbers or variables, arranged in rows and columns. A matrix with $m$ rows and $n$ columns has $m \times n$ elements and is called an $m$ by $n$ matrix. Matrices are a part of .

Matrices can be added and subtracted. Furthermore, if they have compatible shapes, they can be multiplied. More precisely, given two matrices $A$ and $B$, the matrix $AB$ is defined when the number of columns of $A$ is equal to the number of rows of $B$. In particular, given a natural number $n$, any two matrices $A$ and $B$ with $n$ columns and $n$ rows can be multiplied in both ways (that is, both $AB$ and $BA$ exist).


For questions specifically concerning matrix equations, use the tag.

51383 questions
95
votes
2 answers

Determinant of a non-square matrix

I wrote an answer to this question based on determinants, but subsequently deleted it because the OP is interested in non-square matrices, which effectively blocks the use of determinants and thereby undermined the entire answer. However, it can be…
goblin GONE
  • 65,164
  • 15
  • 90
  • 252
93
votes
3 answers

Why did no student correctly find a pair of $2\times 2$ matrices with the same determinant and trace that are not similar?

I gave the following problem to students: Two $n\times n$ matrices $A$ and $B$ are similar if there exists a nonsingular matrix $P$ such that $A=P^{-1}BP$. Prove that if $A$ and $B$ are two similar $n\times n$ matrices, then they have the same…
90
votes
9 answers

Why are rotational matrices not commutative?

Is there any intuition why rotational matrices are not commutative? I assume the final rotation is the combination of all rotations. Then how does it matter in which order the rotations are applied?
Navin Prashath
  • 1,035
  • 1
  • 9
  • 9
86
votes
11 answers

Why does Friedberg say that the role of the determinant is less central than in former times?

I am taking a proof-based introductory course to Linear Algebra as an undergrad student of Mathematics and Computer Science. The author of my textbook (Friedberg's Linear Algebra, 4th Edition) says in the introduction to Chapter 4: The determinant,…
dacabdi
  • 1,132
  • 12
  • 17
84
votes
6 answers

Alice and Bob play the determinant game

Alice and Bob play the following game with an $n \times n$ matrix, where $n$ is odd. Alice fills in one of the entries of the matrix with a real number, then Bob, then Alice and so forth until the entire matrix is filled. At the end, the…
pad
  • 2,827
  • 1
  • 17
  • 35
81
votes
2 answers

Factorial of a matrix: what could be the use of it?

Recently on this site, the question was raised how we might define the factorial operation $\mathsf{A}!$ on a square matrix $\mathsf{A}$. The answer, perhaps unsurprisingly, involves the Gamma function. What use might it be to take the factorial of…
81
votes
4 answers

Are the eigenvalues of $AB$ equal to the eigenvalues of $BA$?

First of all, am I being crazy in thinking that if $\lambda$ is an eigenvalue of $AB$, where $A$ and $B$ are both $N \times N$ matrices (not necessarily invertible), then $\lambda$ is also an eigenvalue of $BA$? If it's not true, then under what…
dantswain
  • 965
  • 1
  • 7
  • 5
81
votes
4 answers

A matrix and its transpose have the same set of eigenvalues/other version: $A$ and $A^T$ have the same spectrum

Let $ \sigma(A)$ be the set of all eigenvalues of $A$. Show that $ \sigma(A) = \sigma\left(A^T\right)$ where $A^T$ is the transpose matrix of $A$.
Zizo
  • 1,663
  • 2
  • 16
  • 19
79
votes
7 answers

What exactly are eigen-things?

Wikipedia defines an eigenvector like this: An eigenvector of a square matrix is a non-zero vector that, when multiplied by the matrix, yields a vector that differs from the original vector at most by a multiplicative scalar. So basically in layman…
76
votes
8 answers

How many connected components does $\mathrm{GL}_n(\mathbb R)$ have?

I've noticed that $\mathrm{GL}_n(\mathbb R)$ is not a connected space, because if it were $\det(\mathrm{GL}_n(\mathbb R))$ (where $\det$ is the function ascribing to each $n\times n$ matrix its determinant) would be a connected space too, since…
Bartek
  • 5,965
  • 4
  • 25
  • 64
75
votes
11 answers

Why determinant of a 2 by 2 matrix is the area of a parallelogram?

Let $A=\begin{bmatrix}a & b\\ c & d\end{bmatrix}$. How could we show that $ad-bc$ is the area of a parallelogram with vertices $(0, 0),\ (a, b),\ (c, d),\ (a+b, c+d)$? Are the areas of the following parallelograms the same? $(1)$ parallelogram with…
user
75
votes
3 answers

Given this transformation matrix, how do I decompose it into translation, rotation and scale matrices?

I have this problem from my Graphics course. Given this transformation matrix: $$\begin{pmatrix} -2 &-1& 2\\ -2 &1& -1\\ 0 &0& 1\\ \end{pmatrix}$$ I need to extract translation, rotation and scale matrices. I've also have the answer (which is…
metavers
  • 751
  • 1
  • 6
  • 3
74
votes
6 answers

Geometric interpretation for complex eigenvectors of a 2×2 rotation matrix

The rotation matrix $$\pmatrix{ \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta}$$ has complex eigenvalues $\{e^{\pm i\theta}\}$ corresponding to eigenvectors $\pmatrix{1 \\i}$ and $\pmatrix{1 \\ -i}$. The real eigenvector of a 3d rotation…
71
votes
8 answers

Why does this "miracle method" for matrix inversion work?

Recently, I answered this question about matrix invertibility using a solution technique I called a "miracle method." The question and answer are reproduced below: Problem: Let $A$ be a matrix satisfying $A^3 = 2I$. Show that $B = A^2 - 2A + 2I$ is…
David Zhang
  • 8,302
  • 2
  • 35
  • 56
70
votes
6 answers

Intuitive explanation of a positive semidefinite matrix

What is an intuitive explanation of a positive-semidefinite matrix? Or a simple example which gives more intuition for it rather than the bare definition. Say $x$ is some vector in space and $M$ is some operation on vectors. The definition is: A $n$…