For questions related to Bayes' theorem, a result about conditional probabilities.

Bayes' theorem relates probabilities of events with conditional probabilities. In its most common form, the result states that if $A$ and $B$ are events, then

$$P(A | B) = \frac{P(B|A) P(A)}{P(B)}$$

where $P(A | B)$ is the conditional probability of $B$ given $A$.

Interpretations of this statement vary according to the Bayesian interpretation, and the Frequentist interpretation.

Reference: Bayes' Theorem.