Show that if $n$ is not divisible by $2$ or by $3$, then $n^2-1$ is divisible by $24$.

I thought I would do the following ... As $n$ is not divisible by $2$ and $3$ then $$n=2k+1\;\text{or}\\n=3k+1\;\text{or}\\n=3k+2\;\;\;\;$$for some $n\in\mathbb{N}$.
And then make induction over $k$ in each case.$$24\mid (2k+1)^2-1\;\text{or}\\24\mid (3k+1)^2-1\;\text{or}\\24\mid (3k+2)^2-1\;\;\;\;$$This question is in a text of ** Euclidean Division** I'm reviewing, and I wonder if there is a simpler, faster, or direct this way.