Consider a function $f(t)$ with Fourier Transform $F(s)$. So $$F(s) = \int_{-\infty}^{\infty} e^{-2 \pi i s t} f(t) \ dt$$

What is the Fourier Transform of $f'(t)$? Call it $G(s)$.So $$G(s) = \int_{-\infty}^{\infty} e^{-2 \pi i s t} f'(t) \ dt$$

Would we consider $\frac{d}{ds} F(s)$ and try and write $G(s)$ in terms of $F(s)$?