Which of the following is a continuous image of $GL_n(\mathbb{R})$?

The real line $\mathbb{R}$

The subspace $\{(x,\frac1x):x\in \mathbb{R},x \ne 0\}$ of $\mathbb{R}^2$

$\mathbb{R}^2 \setminus \{(x,\frac1x):x\in \mathbb{R},x \ne 0\}$

$\{(x_1,x_2,...,x_n):x_1^2+x_2^2+...+x_n^2 \le 1\}$ of $\mathbb{R}^n$

How do I proceed?

$GL_n(\mathbb{R})$ is not compact, not connected, so I cannot rule out some options using topological properties.