Using a right triangle with side lengths $(a,b,c)$ where $a , b < c$, I was thinking about how the area of a Pythagorean triple can be found using the Pythagorean triple right before it and I came across something that worked for a large number of Pythagorean triples, $12r^2 + a_{k- 1}b_{k - 1} = a_kb_k$, a recursive formula where $k$ represents the $k$th term in a sequence. This seemingly generates a sequence of Pythagorean triples that I could not find used in any other formula. Its important to note that $12r^2$ is twice the area of Pythagorean triples that stem from side lengths $(3,4,5)$. Using this formula we can find the $1st$ term of sets where the inradius of each Pythagorean triple is $r + r^2k$ and the relationship between the side lengths are still defined by our recursive formula.

These $1st$ terms are triplets with an even value of $a$ where $r$ increases by $2$:

$(8,15,17),(12,35,37),(16,63,65)...$

Note: We find this using $(8,15,17)$ as we have a recursive formula as well as the knowledge that $r = \frac{a + b - \sqrt{a^2 + b^2}}2$, which lets us find the side lengths of each Pythagorean triple.

Here is a sample of what they generate: $$\begin{array}{c|c|c|c} set_1&15,8,17&33,56,65&51,140,149&69,260,269 \\ \hline set_2&35,12,37&85,132,157&135,352,377&185,672,697 \\ \hline set_3 &63,16,65&161,240,289&259,660,709&357,1276,1325& \\ \hline set_4&99,20,101&261,380,461&423,1064,1145&585,2072,2153 \\ \hline \end{array}$$

I couldn't seem to find any similar formulas to this one or any method of generating Pythagorean triples that follow this sequence, I am looking for a proof.