I thought about this problem for a while, but I have no idea how to approach it.

You have 8 groups, with 4 of the groups having 6 people and rest of the 4 groups having 3 people. So you have 36 people in total.

Now we want to pick 18 pairs from 36 people to form a tournament.

I believe there are $\frac{36!}{18! 2^{18}}$(I don't really understand how to get this number though) as can be seen here: Number of ways you can form pairs with a group of people when certain people cannot be paired with each other.

Now, I want pairings to be such that no people from the same group play against each other. How many possible pairings exist under this constraint?

This is a very similar question: UEFA Champions League quarterfinals 2018 draw - pairing of same country teams

However, I don't think the approach there would work.

Thanks!

EDIT: The most general form of this question would be to let the number of groups and number of people in each group vary, and to find the formula for this. I am now wondering if such a formula exists. So for example, what if you have 11 groups, and 4 of them have 5 people, 5 of them have 4 people, and 2 of them have 12 people.

EDIT:

I ran some simulation, I keep getting about 0.11 instead of Henry's 0.245. Here is my code.

```
team_list = c(rep(1:6, 4), rep(1:3,4))
for (i in 1:6){
team_list[i] = paste("A", team_list[i], sep = "")
}
for (i in 7:12){
team_list[i] = paste("B", team_list[i], sep = "")
}
for (i in 13:18){
team_list[i] = paste("C", team_list[i], sep = "")
}
for (i in 19:24){
team_list[i] = paste("D", team_list[i], sep = "")
}
for (i in 25:27){
team_list[i] = paste("E", team_list[i], sep = "")
}
for (i in 28:30){
team_list[i] = paste("F", team_list[i], sep = "")
}
for (i in 31:33){
team_list[i] = paste("G", team_list[i], sep = "")
}
for (i in 34:36){
team_list[i] = paste("H", team_list[i], sep = "")
}
check_pair = function(x){
for (i in seq(from = 1, to = length(x), by = 2)){
if (substr(x[i],1,1) == substr(x[i+1],1,1)){
return (TRUE)
}
}
return (FALSE)
}
count = 0
for (i in 1:10000){
x = sample(team_list, size = 36)
if (!check_pair(x)){
count = count+1
}
}
count/10000
team_list = c("A1", "A2", "B1", "B2", "C1", "C2")
pair_combn <- function(x) {
Filter(function(e) all(unique(x) %in% unlist(e)),
combn(as.data.frame(combn(x, 2)),
length(x)/2, simplify = FALSE))
}
pair_combn(team_list)
check_pair = function(x){
for (i in seq(from = 1, to = length(x), by = 2)){
if (substr(x[i],1,1) == substr(x[i+1],1,1)){
return (TRUE)
}
}
return (FALSE)
}
count = 0
for (i in 1:10000){
x = sample(team_list, size = 6)
if (!check_pair(x)){
count = count+1
}
}
count/10000
team_list = c("A1", "A2", "B1", "B2", "C1", "D1")
pair_combn <- function(x) {
Filter(function(e) all(unique(x) %in% unlist(e)),
combn(as.data.frame(combn(x, 2)),
length(x)/2, simplify = FALSE))
}
pair_combn(team_list)
check_pair = function(x){
for (i in seq(from = 1, to = length(x), by = 2)){
if (substr(x[i],1,1) == substr(x[i+1],1,1)){
return (TRUE)
}
}
return (FALSE)
}
count = 0
for (i in 1:10000){
x = sample(team_list, size = 6)
if (!check_pair(x)){
count = count+1
}
}
count/10000
z = pair_combn(team_list)
team_list = c("A1", "A2", "B1", "B2", "C1", "D1", "E1", "E2")
pair_combn <- function(x) {
Filter(function(e) all(unique(x) %in% unlist(e)),
combn(as.data.frame(combn(x, 2)),
length(x)/2, simplify = FALSE))
}
combination = pair_combn(team_list)
check_pair = function(x){
for (i in seq(from = 1, to = length(x), by = 2)){
if (substr(x[i],1,1) == substr(x[i+1],1,1)){
return (TRUE)
}
}
return (FALSE)
}
count = 0
for (i in 1:105){
to_check = as.vector(unlist(combination[[i]]))
if (!check_pair(to_check)){
count = count+1
}
}
print (count)
count = 0
for (i in 1:10000){
x = sample(team_list, size = 8)
if (!check_pair(x)){
count = count+1
}
}
count/10000
team_list = c("A1", "A2", "A3", "A4", "B1", "B2", "C1", "C2")
pair_combn <- function(x) {
Filter(function(e) all(unique(x) %in% unlist(e)),
combn(as.data.frame(combn(x, 2)),
length(x)/2, simplify = FALSE))
}
combination = pair_combn(team_list)
check_pair = function(x){
for (i in seq(from = 1, to = length(x), by = 2)){
if (substr(x[i],1,1) == substr(x[i+1],1,1)){
return (TRUE)
}
}
return (FALSE)
}
count = 0
for (i in 1:105){
to_check = as.vector(unlist(combination[[i]]))
if (!check_pair(to_check)){
count = count+1
}
}
print (count)
count = 0
for (i in 1:10000){
x = sample(team_list, size = 8)
if (!check_pair(x)){
count = count+1
}
}
count/10000
team_list = c("A1", "A2", "A3", "B1", "B2", "B3", "C1", "C2")
pair_combn <- function(x) {
Filter(function(e) all(unique(x) %in% unlist(e)),
combn(as.data.frame(combn(x, 2)),
length(x)/2, simplify = FALSE))
}
combination = pair_combn(team_list)
check_pair = function(x){
for (i in seq(from = 1, to = length(x), by = 2)){
if (substr(x[i],1,1) == substr(x[i+1],1,1)){
return (TRUE)
}
}
return (FALSE)
}
count = 0
for (i in 1:105){
to_check = as.vector(unlist(combination[[i]]))
if (!check_pair(to_check)){
count = count+1
}
}
print (count)
count = 0
for (i in 1:10000){
x = sample(team_list, size = 8)
if (!check_pair(x)){
count = count+1
}
}
count/10000
```

And some results I get:

For 3 group of 4 people, 2 people, and 2 people, I get 24 out of 105

For 3 group of 3 people, 3 people and 2 people, I get 36 out of 105

For 5 group of 2 people, 2 people, 2 people, 1 person and 1 person, I get 68 out of 105.