This is a follow-up question on this one. The answers to my questions made things a lot clearer to me (Thank you for that!), yet there is some point that still bothers me.

This time I am making things more concrete: I am esp. interested in the difference between a metric and a norm. I understand that the metric gives the distance between two points as a real number. The norm gives the length of a a vector as a real number (see def. e.g. here). I further understand that all normed spaces are metric spaces (for a norm induces a metric) but not the other way around (please correct me if I am wrong).

Here I am only talking about vector spaces. As an example lets talk about Euclidean distance and Euclidean norm. Wikipedia says:

A vector can be described as a directed line segment from the origin of the Euclidean space (vector tail), to a point in that space (vector tip). If we consider that its length is actually the distance from its tail to its tip, it becomes clear that the Euclidean norm of a vector is just a special case of Euclidean distance: the Euclidean distance between its tail and its tip.

What confuses me is that they seem to be having it backwards: The Euclidean metric induces the Euclidean norm: You measure the distance between tip and tail and get the length out of that. What makes my confusion complete is that $L^2$ *distance* is also called the Euclidean *norm* (see here).

I would very much appreciate it if somebody could clear the haze.