If $m$ and $n$ are integers, show that $\biggl|\sqrt{3}-\dfrac{m}{n}\biggr| \ge \dfrac{1}{5n^{2}}$.

Since $\biggl|\sqrt{3}-\dfrac{m}{n}\biggr|$ is equivalent to $\biggl|\dfrac{ \sqrt{3}n-m}{n}\biggr|$

So I performed the following operation $\biggl|\dfrac{\sqrt{3}n-m}{n}\biggr|\cdot \biggl|\dfrac{\sqrt{3}n+m}{\sqrt{3}n+m}\biggr|$ to get $$\biggl|\dfrac{3n^{2}-m^{2}}{\sqrt{3}n^{2}+mn}\biggr|$$

Since $n,m \ne 0$, we have that $|3n^{2}-m^{2}| \ge 1$. Now for the denominator, we have $$ |\sqrt{3}n^{2}+mn| \le |\sqrt{3n^{2}}| + |mn| $$

Thus it follows that $$\dfrac{1}{|\sqrt{3}n^{2}+mn|} \ge \dfrac{1}{|\sqrt{3}n^{2}| + |mn|}$$

Would I have to work in cases where $m<n$, for example? Then we have $$|\sqrt{3}n^{2}| + |mn| < |\sqrt{3}n^{2}| + n^{2} < 3n^{2} + n^{2} < 5n^{2}$$ which gives us the desired result. Although, the same method doesn't work when $n >m$.