We are asked to solve for $x$ and $y$ in the following pair of simultaneous equations:

$$\begin{align}3x+2y&=36 \tag1\\ 5x+4y&=64\tag2\end{align}$$

I can multiply $(1)$ by $2$, yielding $6x + 4y = 72$, and subtracting $(2)$ from this new equation eliminates $4y$ to solve strictly for $x$; i.e. $6x - 5x = 72 - 64 \Rightarrow x = 8$. Substituting $x=8$ into $(2)$ reveals that $y=6$.

I could also subtract $(1)$ from $(2)$ and divide by $2$, yielding $x+y=14$. Let $$\begin{align}3x+3y - y &= 36 \tag{1a}\\ 5x + 5y - y &= 64\tag{1b}\end{align}$$ then expand brackets, and it follows that $42 - y = 36$ and $70 - y = 64$, thus revealing $y=6$ and so $x = 14 - 6 = 8$.

I can even use *matrices*!

$(1)$ and $(2)$ could be written in matrix form:

$$\begin{align}\begin{bmatrix} 3 &2 \\ 5 &4\end{bmatrix}\begin{bmatrix} x \\ y\end{bmatrix}&=\begin{bmatrix}36 \\ 64\end{bmatrix}\tag3 \\ \begin{bmatrix} x \\ y\end{bmatrix} &= {\begin{bmatrix} 3 &2 \\ 5 &4\end{bmatrix}}^{-1}\begin{bmatrix}36 \\ 64\end{bmatrix} \\ &= \frac{1}{2}\begin{bmatrix}4 &-2 \\ -5 &3\end{bmatrix}\begin{bmatrix}36 \\ 64\end{bmatrix} \\ &=\frac12\begin{bmatrix} 16 \\ 12\end{bmatrix} \\ &= \begin{bmatrix} 8 \\ 6\end{bmatrix} \\ \\ \therefore x&=8 \\ \therefore y&= 6\end{align}$$

# Question

Are there any other methods to solve for both $x$ and $y$?