I'm looking for statements that look obviously false but have no disproof (yet).

For example The base-10 digits of $\pi$ eventually only include 0s and 1s.

To make this question a little objective, I'm thinking about the *"Vegas gambling odds"* I would need to bet on each statement. Or, equivalently, the final answer will be the one statement I'd choose if forced to bet my life against one. I'm hoping voters could try to take one of those approaches too and I'll probably then just side with the biggest vote-getter.

I'm looking for statements that even children would doubt, and that really is the goal of my question, but I'm also a little curious whether the definitions of more advanced math might somehow create an even more laughable but possible statement. So, don't hold back if anything in your mind seems more obvious to you.

EDIT: Most statements probably have an obvious improvement method (e.g., as @bof pointed out,
the $\pi$ example can use two different long fixed blocks of digits to fill the tail instead of
just 0/1), so I'll simply judge with added style points for making statements *"short, sweet,
and easy for children to contemplate"*. The main difference from this prior question is
that answers do not need to be *"important"* (so the focus here in my question is not on advanced
mathematics) and that I'm choosing the least believable statement as the answer.

CONCLUSION: If I owned a casino, here's where I'd set the odds. I struck out two statements though because I personally wouldn't take bets on them (like I mentioned in comments, I think the losing gamblers would complain about ambiguous terms even if I handed out some huge book explaining them). I'm curious where the smart money would go with these odds...and wish we had a trusted oracle to settle the bets in the end. I also changed the title of this question to try to keep it open.

~~$10^{\ \ 3}:1\quad\quad$P = NP~~$10^{13}:1\quad\quad$The number $2\uparrow 2\uparrow 2\uparrow 2+3\uparrow 3\uparrow 3\uparrow 3$ is a prime number

$10^{12}:1\quad\quad$The continuum is $\aleph_{37}$

~~$10^{\ \ 4}:1\quad\quad$Peano arithmetics proves 1=0~~$10^{\ \ 5}:1\quad\quad \zeta(5)$ is rational

$10^{\ \ 6}:1\quad\quad e+\pi$ is rational

$10^{\ \ 2}:1\quad\quad$The Riemann Hypothesis is FALSE

$10^{30}:1\quad\quad$The base-10 square root of every prime number eventually only includes 0s and 1s

$10^{14}:1\quad\quad$The number $\Large \pi^{\pi^{\pi^\pi}}$ is an integer

$10^{15}:1\quad\quad$The base-10 digits of π eventually only include 0s and 1s