27

I'm attempting to prove that

$$ \left[ \begin{array}{c c} A & B \\ C & D \\ \end{array} \right]^\top = \left[ \begin{array}{c c} A^\top & C^\top \\ B^\top & D^\top \\ \end{array} \right]. $$

Intuitively, I can see that it's true. However, when I try to formally prove it, I quickly get lost in the indices. What tricks can I use to keep things straight?

Source: Exercise 2.6.16, P116, Intro to Linear Algebra, 4th Ed by Strang

Jneven
  • 2,663
  • 2
  • 13
  • 31
Red
  • 273
  • 1
  • 3
  • 4

1 Answers1

41

Most people would just claim this is obvious and omit the proof, but if you don't want to do that then perhaps you could first prove that \begin{equation} \begin{bmatrix} M & N \end{bmatrix}^T = \begin{bmatrix} M^T \\ N^T \end{bmatrix} \end{equation} and \begin{equation} \begin{bmatrix} M \\ N \end{bmatrix}^T = \begin{bmatrix} M^T & N^T \end{bmatrix}. \end{equation} Then \begin{align} \begin{bmatrix} A & B \\ C & D \end{bmatrix}^T &= \begin{bmatrix} \begin{bmatrix} A \\ C \end{bmatrix}^T \\ \begin{bmatrix} B \\ D \end{bmatrix}^T \end{bmatrix} \\ &= \begin{bmatrix} A^T & C^T \\ B^T & D^T \end{bmatrix}. \end{align}

littleO
  • 48,104
  • 8
  • 84
  • 154