$f(n)=7^{6n} - 6^{6n}$, where $n$ is a positive integer. find the divisors of $f(n)$ for odd and even values of $n$. Is there a general solution for the divisors.

$$f(1)=7^6-6^6=(7^3)^{2}-(6^3)^{2}$$

$$f(1)=(7-6)(7^2+(7)(6)+6^2)(7^3+6^3)$$

$$f(1)=(1)(127)(7^3+6^3)$$