6

Do there exist semi-local Noetherian rings with infinite Krull dimension?

As far as I know, Nagata's counterexample to the finite dimensionality for general Noetherian rings is not semi-local.

user26857
  • 1
  • 13
  • 62
  • 125
Not Buying It
  • 461
  • 2
  • 7

1 Answers1

7

No, this can't exist: If ${\mathfrak m}_1,...,{\mathfrak m}_k$ are the finitely many maximal ideals of $R$, then each localization $R_{{\mathfrak m}_i}$ has finite Krull-dimension, and hence $\text{dim}(R) = \max\{\text{dim}(R_{{\mathfrak m}_i})\ |\ i=1,2,...,k\}<\infty.$

Hanno
  • 17,860
  • 2
  • 26
  • 56