Let $S(n)$ be the digit sum of $n\in\mathbb N$ in the decimal system. About a month ago, a friend of mine taught me the following:

$$S\left(9\color{red}{^2}\right)=S(81)=8+1=3\color{red}{^2}$$ $$S\left(10\color{red}{^2}\right)=S(100)=1+0+0=1\color{red}{^2}$$ $$S\left(11\color{red}{^2}\right)=S(121)=1+2+1=2\color{red}{^2}$$ $$S\left(12\color{red}{^2}\right)=S(144)=1+4+4=3\color{red}{^2}$$ $$S\left(13\color{red}{^2}\right)=S(169)=1+6+9=4\color{red}{^2}$$ $$S\left(14\color{red}{^2}\right)=S(196)=1+9+6=4\color{red}{^2}$$ $$S\left(15\color{red}{^2}\right)=S(225)=2+2+5=3\color{red}{^2}$$

Then, I've got the following:

For every $m\in\mathbb N$, each of the following $7$ numbers is a square. $$S\left(\left(10^{(3m-2)^2}-1\right)^2\right),S\left(\left(10^{(3m-2)^2}\right)^2\right),\cdots,S\left(\left(10^{(3m-2)^2}+5\right)^2\right)$$

However, I'm facing difficulty in finding such $8$ *consecutive* numbers. So, here is my question:

Question: What is the max of $k\in\mathbb N$ such that there exists at least one $n$ which satisfies the following condition?

Condition: Each of the following $k$ numbers is a square. $$S\left((n+1)^2\right),S\left((n+2)^2\right),\cdots,S\left((n+k-1)^2\right),S\left((n+k)^2\right)$$

Note that we have $k\ge 7$. Can anyone help?

**Added** : A user Peter found the following example of $k=8$ :
$$S\left(46045846^2\right)=8^2,S\left(46045847^2\right)=7^2,\cdots,S\left(46045852^2\right)=7^2,S\left(46045853^2\right)=8^2$$
Hence, we have $k\ge 8$.